Skip to main content
Log in

Distribution of LAT1-targeting PET tracer was independent of the tumor blood flow in rat xenograft models of C6 glioma and MIA PaCa-2

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

L-type amino acid transporter 1 (LAT1) is strongly expressed on the cell membrane in various types of human cancer cells, while being minimally expressed in normal or inflammatory tissues. Therefore, LAT1-targeting PET tracers have been developed for cancer-specific imaging. The purpose of this study was to study the distribution of two LAT1-targeting PET tracers, L-4-borono-2-18F-fluoro-phenylalanine (18F-FBPA) and L-3-18F-alpha-methyl tyrosine (18F-FAMT), in relation to the tumor blood flow, using rat xenograft models.

Methods

Rat tumor xenograft models of C6 glioma (n = 4; tumors = 8) and MIA PaCa-2 (pancreatic cancer) (n = 4; tumors = 6) were used. The expressions of LAT1 and CD98hc were evaluated by both immunofluorescence staining and western blot analysis. Dynamic PET was performed after injection of 18F-FAMT or 18F-FBPA (scan duration = 70 min) following 15O-water PET (scan duration = 10 min). The PET data were subjected to kinetic analyses, and the K1, k2, and total distribution volume (Vt) were calculated using the one-tissue compartment model. The accumulation of the LAT1 tracers was expressed in terms of their Vt. Tumor blood flow (TBF) was represented by the K1 value in 15O-water PET.

Results

LAT1/CD98hc expression was confirmed in both xenografts by immunofluorescence staining. Western blot analysis showed higher functional expression of LAT1 in the C6 glioma cells as compared to the MIA PaCa-2 cells (C6 glioma/MIA PaCa-2 relative expression ratio = 1.70). The Vt values of both 18F-FBPA and 18F-FAMT were significantly higher in the C6 glioma xenografts than in the MIA PaCa-2 xenografts (C6 glioma: 2.27 ± 0.35 and 2.03 ± 0.23, respectively; MIA PaCa-2: 1.28 ± 0.26 and 1.35 ± 0.15, respectively). Meanwhile, there was no significant correlation of the Vt value of either 18F-FBPA or 18F-FAMT with the TBF, in either the C6 glioma or the MIA PaCa-2 xenografts.

Conclusions

This study revealed that total distribution volumes of the LAT1-targeting PET tracers 18F-FBPA and 18F-FAMT were independent of the tumor blood flow and might reflect the functional expression levels of LAT1 in the C6 glioma and MIA PaCa-2 xenograft models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Douglas A, Lau E, Thursky K, Slavin M. What, where and why: exploring fluorodeoxyglucose-PET’s ability to localise and differentiate infection from cancer. Curr Opin Infect Dis. 2017;30:552–64. https://doi.org/10.1097/QCO.0000000000000405.

    Article  PubMed  Google Scholar 

  2. Delgado-Bolton RC, Fernandez-Perez C, Gonzalez-Mate A, Carreras JL. Meta-analysis of the performance of 18F-FDG PET in primary tumor detection in unknown primary tumors. J Nucl Med. 2003;44:1301–14.

    PubMed  Google Scholar 

  3. Hurwitz R. F-18 FDG positron emission tomographic imaging in a case of ruptured breast implant: inflammation or recurrent tumor? Clin Nucl Med. 2003;28:755–6. https://doi.org/10.1097/01.rlu.0000082664.22354.4b.

    Article  PubMed  Google Scholar 

  4. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med. 2001;42:1551–5.

    CAS  PubMed  Google Scholar 

  5. Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, et al. l-type amino acid transporter 1 and CD98 expression in primary and metastatic sites of human neoplasms. Cancer Sci. 2008;99:2380–6. https://doi.org/10.1111/j.1349-7006.2008.00969.x.

    Article  CAS  PubMed  Google Scholar 

  6. Oda K, Hosoda N, Endo H, Saito K, Tsujihara K, Yamamura M, et al. l-type amino acid transporter 1 inhibitors inhibit tumor cell growth. Cancer Sci. 2010;101:173–9. https://doi.org/10.1111/j.1349-7006.2009.01386.x.

    Article  CAS  PubMed  Google Scholar 

  7. Imai H, Kaira K, Oriuchi N, Shimizu K, Tominaga H, Yanagitani N, et al. Inhibition of l-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res. 2010;30:4819–28.

    CAS  PubMed  Google Scholar 

  8. Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, et al. Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med. 1998;39:325–33.

    CAS  PubMed  Google Scholar 

  9. Hanaoka K, Watabe T, Naka S, Kanai Y, Ikeda H, Horitsugi G, et al. FBPA PET in boron neutron capture therapy for cancer: prediction of (10)B concentration in the tumor and normal tissue in a rat xenograft model. EJNMMI Res. 2014;4:70. https://doi.org/10.1186/s13550-014-0070-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watabe T, Ikeda H, Nagamori S, Wiriyasermkul P, Tanaka Y, Naka S, et al. 18F-FBPA as a tumor-specific probe of l-type amino acid transporter 1 (LAT1): a comparison study with 18F-FDG and 11C-methionine PET. Eur J Nucl Med Mol Imaging. 2017;44:321–31. https://doi.org/10.1007/s00259-016-3487-1.

    Article  CAS  PubMed  Google Scholar 

  11. Wiriyasermkul P, Nagamori S, Tominaga H, Oriuchi N, Kaira K, Nakao H, et al. Transport of 3-fluoro-l-alpha-methyl-tyrosine by tumor-upregulated l-type amino acid transporter 1: a cause of the tumor uptake in PET. J Nucl Med. 2012;53:1253–61. https://doi.org/10.2967/jnumed.112.103069.

    Article  CAS  PubMed  Google Scholar 

  12. Horiguchi K, Tosaka M, Higuchi T, Arisaka Y, Sugawara K, Hirato J, et al. Clinical value of fluorine-18alpha-methyltyrosine PET in patients with gliomas: comparison with fluorine-18 fluorodeoxyglucose PET. EJNMMI Res. 2017;7:50. https://doi.org/10.1186/s13550-017-0298-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khunweeraphong N, Nagamori S, Wiriyasermkul P, Nishinaka Y, Wongthai P, Ohgaki R, et al. Establishment of stable cell lines with high expression of heterodimers of human 4F2hc and human amino acid transporter LAT1 or LAT2 and delineation of their differential interaction with alpha-alkyl moieties. J Pharmacol Sci. 2012;119:368–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagamori S, Smirnova IN, Kaback HR. Role of YidC in folding of polytopic membrane proteins. J Cell Biol. 2004;165(1):53–62. https://doi.org/10.1083/jcb.200402067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50:401–8. https://doi.org/10.2967/jnumed.108.056374.

    Article  PubMed  Google Scholar 

  16. Ishiwata K, Ido T, Mejia AA, Ichihashi M, Mishima Y. Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoro-d,l-phenylalanine: a target compound for PET and boron neutron capture therapy. Int J Rad Appl Instrum A. 1991;42:325–8.

    Article  CAS  PubMed  Google Scholar 

  17. Tomiyoshi K, Amed K, Muhammad S, Higuchi T, Inoue T, Endo K, et al. Synthesis of isomers of 18F-labelled amino acid radiopharmaceutical: position 2- and 3-l-18F-alpha-methyltyrosine using a separation and purification system. Nucl Med Commun. 1997;18:169–75.

    Article  CAS  PubMed  Google Scholar 

  18. Watabe T, Kanai Y, Ikeda H, Horitsugi G, Matsunaga K, Kato H, et al. Quantitative evaluation of oxygen metabolism in the intratumoral hypoxia: (18)F-fluoromisonidazole and (15)O-labelled gases inhalation PET. EJNMMI Res. 2017;7(1):16. https://doi.org/10.1186/s13550-017-0263-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee OH, Fueyo J, Xu J, Yung WK, Lemoine MG, Lang FF, et al. Sustained angiopoietin-2 expression disrupts vessel formation and inhibits glioma growth. Neoplasia. 2006;8(5):419–28. https://doi.org/10.1593/neo.06109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci USA. 2007;104(9):3460–5. https://doi.org/10.1073/pnas.0611660104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y, Tangtrongsup S, et al. Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem. 2003;278:43838–45. https://doi.org/10.1074/jbc.M305221200.

    Article  CAS  PubMed  Google Scholar 

  22. Fotiadis D, Kanai Y, Palacin M. The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med. 2013;34:139–58. https://doi.org/10.1016/j.mam.2012.10.007.

    Article  CAS  PubMed  Google Scholar 

  23. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998;273:23629–32.

    Article  CAS  PubMed  Google Scholar 

  24. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15:254–66. https://doi.org/10.1016/j.semcancer.2005.04.005.

    Article  CAS  PubMed  Google Scholar 

  25. Nawashiro H, Otani N, Shinomiya N, Fukui S, Ooigawa H, Shima K, et al. l-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer. 2006;119:484–92. https://doi.org/10.1002/ijc.21866.

    Article  CAS  PubMed  Google Scholar 

  26. Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, et al. Prognostic significance of l-type amino acid transporter 1 expression in resectable stage I-III nonsmall cell lung cancer. Br J Cancer. 2008;98:742–8. https://doi.org/10.1038/sj.bjc.6604235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakata T, Ferdous G, Tsuruta T, Satoh T, Baba S, Muto T, et al. l-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol Int. 2009;59:7–18. https://doi.org/10.1111/j.1440-1827.2008.02319.x.

    Article  CAS  PubMed  Google Scholar 

  28. Furuya M, Horiguchi J, Nakajima H, Kanai Y, Oyama T. Correlation of l-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis. Cancer Sci. 2012;103:382–9. https://doi.org/10.1111/j.1349-7006.2011.02151.x.

    Article  CAS  PubMed  Google Scholar 

  29. Nakanishi T, Tamai I. Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J Pharm Sci. 2011;100:3731–50. https://doi.org/10.1002/jps.22576.

    Article  CAS  PubMed  Google Scholar 

  30. Lo M, Ling V, Wang YZ, Gout PW. The xc- cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer. 2008;99:464–72. https://doi.org/10.1038/sj.bjc.6604485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei L, Tominaga H, Ohgaki R, Wiriyasermkul P, Hagiwara K, Okuda S, et al. Specific transport of 3-fluoro-l-alpha-methyl-tyrosine by LAT1 explains its specificity to malignant tumors in imaging. Cancer Sci. 2016;107:347–52. https://doi.org/10.1111/cas.12878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meier C, Ristic Z, Klauser S, Verrey F. Activation of system l heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 2002;21:580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Verrey F. System L. heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch. 2003;445:529–33. https://doi.org/10.1007/s00424-002-0973-z.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.A. received support from the Osaka University Medical Doctor Scientist Training Program. We would like to thank all the members of the PET Drug Synthesis Department at Osaka University Hospital for preparing the tracers, the Department of Bio-system Pharmacology for providing support for the immunofluorescence staining, the Medical Imaging Center for Translational Research for their excellent technical assistance, and the Department of Nuclear Medicine and Tracer Kinetics for providing support for the experiments. This study was supported by the KAKENHI Grant-in-Aid for Scientific Research (S) (Number 24229008) and the KAKENHI (A) (Number 24249077) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors have no potential conflict of interest to disclose in relation to this article.

Funding

This study was funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Watabe.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, M., Watabe, T., Nagamori, S. et al. Distribution of LAT1-targeting PET tracer was independent of the tumor blood flow in rat xenograft models of C6 glioma and MIA PaCa-2. Ann Nucl Med 33, 394–403 (2019). https://doi.org/10.1007/s12149-019-01346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-019-01346-9

Keywords

Navigation