Skip to main content

Amino Acid PET/MRI in Neuro-oncology

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging

Abstract

FDG-PET is the most common modality for metabolic imaging in brain tumors that can provide prognostic information at initial assessment of patients with brain tumors. However, high normal background uptake of FDG limits its diagnostic performance in brain tumors. Amino acid-based PET tracers provide excellent evaluation of brain tumors due to their low background uptake by normal brain tissue and provide critical insight into biological and genetic profile of brain tumors. Furthermore, amino acid PET tracers can pass through intact blood-brain barrier (BBB) via amino acid transporters located at the luminal surface of the BBB and are further transported into tumor cells by amino acid transporters that are overexpressed on the cell surface (LAT1 and ASCT2). This ability to cross BBB allows amino acid tracers to clearly delineate non-enhancing portions of brain tumors. Clinical applications of amino acid PET tracers in brain tumors include tumor grade prediction, tumor volume delineation, differentiation between tumor progression and post-treatment changes, stereotactic tumor biopsy guidance, pre-surgical resection planning, pre-radiotherapy target delineation, and noninvasive prediction of tumor genetic mutations. This chapter will concisely discuss principles of amino acid transportation across the BBB and cellular membrane of brain tumor cells. We will also review biochemical characteristics of amino acid tracers, technical imaging aspects of amino acid PET scans, and clinical application of available amino acid PET tracers in brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jager PL, Vaalburg W, Pruim J, de Vries EGE, Langen K-J, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology*. J Nucl Med. 2001;42(3):432–45.

    CAS  PubMed  Google Scholar 

  2. Stryer L. Biochemistry. 4th ed. New York: WH Freeman and Co; 1995.

    Google Scholar 

  3. Lopes C, Pereira C, Medeiros R. ASCT2 and LAT1 contribution to the hallmarks of cancer: from a molecular perspective to clinical translation. Cancers. 2021;13(2):203.

    Article  CAS  PubMed Central  Google Scholar 

  4. Images created by Dr. Mariam Aboian using BioRender.com. 2021.

  5. Moreau A, Febvey O, Mognetti T, Frappaz D, Kryza D. Contribution of different positron emission tomography tracers in glioma management: focus on glioblastoma. Front Oncol. 2019;9:1134.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Souba WW, Pacitti AJ. How amino acids get into cells: mechanisms, models, menus, and mediators. J Parenter Enter Nutr. 1992;16(6):569–78.

    Article  CAS  Google Scholar 

  7. Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990;70(1):43–77.

    Article  CAS  PubMed  Google Scholar 

  8. Smith QRMH, Parepally JM. Amino acid transport across the blood brain barrier. Handbook of biologically active peptides; Amsterdam; Boston : Academic Press 2006: 1415–1422.

    Google Scholar 

  9. Leke R, Schousboe A. The glutamine transporters and their role in the glutamate/GABA–glutamine cycle. In: The glutamate/GABA-glutamine cycle. Cham: Springer; 2016. p. 223–57.

    Chapter  Google Scholar 

  10. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Seminars in cancer biology; 2005: Elsevier; 2005. p. 254–66.

    Google Scholar 

  11. Sun A, Liu X, Tang G. Carbon-11 and fluorine-18 labeled amino acid tracers for positron emission tomography imaging of tumors. Front Chem. 2018;5:124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Scalise M, Galluccio M, Console L, Pochini L, Indiveri C. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem. 2018;6:243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Napolitano L, Scalise M, Galluccio M, Pochini L, Albanese LM, Indiveri C. LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int J Biochem Cell Biol. 2015;67:25–33.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Z, Liu R, Shuai Y, et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer. 2020;122(1):82–93.

    Article  CAS  PubMed  Google Scholar 

  15. Muoio B, Giovanella L, Treglia G. Recent developments of 18F-FET PET in neuro-oncology. Curr Med Chem. 2018;25(26):3061–73.

    Article  CAS  PubMed  Google Scholar 

  16. Heiss P, Mayer S, Herz M, Wester H-J, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F] fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med. 1999;40(8):1367–73.

    CAS  PubMed  Google Scholar 

  17. Juhász C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging. 2014;13 https://doi.org/10.2310/7290.2014.00015.

  18. Schuster DM, Nanni C, Fanti S, et al. Anti-1-Amino-3-18F-Fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med. 2014;55(12):1986–92.

    Article  CAS  PubMed  Google Scholar 

  19. Okudaira H, Shikano N, Nishii R, et al. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med. 2011;52(5):822–9.

    Article  CAS  PubMed  Google Scholar 

  20. Asano S, Kameyama M, Oura A, et al. L-type amino acid transporter-1 expressed in human astrocytomas, U343MGa. Biol Pharm Bull. 2007;30(3):415–22.

    Article  CAS  PubMed  Google Scholar 

  21. Duelli R, Enerson BE, Gerhart DZ, Drewes LR. Expression of large amino acid transporter LAT1 in rat brain endothelium. J Cereb Blood Flow Metab. 2000;20(11):1557–62.

    Article  CAS  PubMed  Google Scholar 

  22. Langen KJ, Hamacher K, Weckesser M, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.

    Article  CAS  PubMed  Google Scholar 

  23. Nakaya M, Xiao Y, Zhou X, et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity. 2014;40(5):692–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol. 2013;191(8):4080–5.

    Article  CAS  PubMed  Google Scholar 

  25. Shooli H. BioRendercom; 2021.

    Google Scholar 

  26. Vittoria Mattoli M, Treglia G, Trevisi G, Muoio B, Cason E. Usefulness of 11C-methionine positron emission tomography in differential diagnosis between recurrent tumours and radiation necro-sis in patients with glioma: an overview. The Open Neurosurg J. 2012;5(1):8–11.

    Article  Google Scholar 

  27. Sato N, Suzuki M, Kuwata N, et al. Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev. 1999;22(4):210–4.

    Article  CAS  PubMed  Google Scholar 

  28. Basu S, Alavi A. Molecular imaging (PET) of brain tumors. Neuroimag Clin. 2009;19(4):625–46.

    Article  Google Scholar 

  29. Kato T, Shinoda J, Nakayama N, et al. Metabolic assessment of gliomas using 11C-methionine, [18/F] Fluorodeoxyglucose, and 11/C-choline positron-emission tomography. Am J Neuroradiol. 2008;29(6):1176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shinozaki N, Uchino Y, Yoshikawa K, et al. Discrimination between low-grade oligodendrogliomas and diffuse astrocytoma with the aid of 11C-methionine positron emission tomography. J Neurosurg. 2011;114(6):1640–7.

    Article  PubMed  Google Scholar 

  31. Kudulaiti N, Qiu T, Lu J, et al. Combination of magnetic resonance spectroscopy and 11C-methionine positron emission tomography for the accurate diagnosis of non-enhancing supratentorial glioma. Korean J Radiol. 2019;20(6):967.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cai L, Gao S, Li DC, Li YS, Chen QS, Xing XL. Value of 18F-FDG and 11C-MET PET-CT in differentiation of brain ringlike-enhanced neoplastic and non-neoplastic lesions on MRI imaging. Zhonghua Zhong Liu Za Zhi. 2009;31(2):134–8.

    PubMed  Google Scholar 

  33. Zhao C, Zhang Y, Wang J. A meta-analysis on the diagnostic performance of 18F-FDG and 11C-methionine PET for differentiating brain tumors. Am J Neuroradiol. 2014;35(6):1058–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He Q, Zhang L, Zhang B, Shi X, Yi C, Zhang X. Diagnostic accuracy of (13)N-ammonia PET, (11)C-methionine PET and (18)F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma. BMC Cancer. 2019;19(1):332.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Derlon JM, Chapon F, Noël MH, et al. Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med. 2000;27(7):778–87.

    Article  CAS  PubMed  Google Scholar 

  36. Kebir S, Weber M, Lazaridis L, et al. Hybrid 11C-MET PET/MRI combined with “machine learning” in glioma diagnosis according to the revised glioma WHO classification 2016. Clin Nucl Med. 2019;44(3):214–20.

    Article  PubMed  Google Scholar 

  37. Takano K, Kinoshita M, Arita H, et al. Diagnostic and prognostic value of 11C-methionine PET for nonenhancing gliomas. Am J Neuroradiol. 2016;37(1):44–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim D, Chun J-H, Kim SH, et al. Re-evaluation of the diagnostic performance of 11 C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas. Eur J Nucl Med Mol I. 2019;46(8):1678–84.

    Article  CAS  Google Scholar 

  39. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  40. Derlon JM, Cabal P, Blaizot X, Borha A, Chapon F. Metabolic imaging for supratentorial oligodendrogliomas. Neurochirurgie. 2005;51(3–4 Pt 2):309–22.

    Article  PubMed  Google Scholar 

  41. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  42. Langen K-J, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol. 2017;13(5):279–89.

    Article  PubMed  Google Scholar 

  43. Ellingson BM, Bendszus M, Boxerman J, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro-Oncology. 2015;17(9):1188–98.

    PubMed  PubMed Central  Google Scholar 

  44. Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011;32(11):1978–85.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Deuschl C, Kirchner J, Poeppel TD, et al. (11)C-MET PET/MRI for detection of recurrent glioma. Eur J Nucl Med Mol Imaging. 2018;45(4):593–601.

    Article  CAS  PubMed  Google Scholar 

  46. D'Souza MM, Sharma R, Jaimini A, et al. 11C-MET PET/CT and advanced MRI in the evaluation of tumor recurrence in high-grade gliomas. Clin Nucl Med. 2014;39(9):791–8.

    Article  PubMed  Google Scholar 

  47. Navarria P, Reggiori G, Pessina F, et al. Investigation on the role of integrated PET/MRI for target volume definition and radiotherapy planning in patients with high grade glioma. Radiother Oncol. 2014;112(3):425–9.

    Article  PubMed  Google Scholar 

  48. Susheela SP, Revannasiddaiah S, Madhusudhan N, Bijjawara M. The demonstration of extension of high-grade glioma beyond magnetic resonance imaging defined edema by the use of (11) C-methionine positron emission tomography. J Cancer Res Ther. 2013;9(4):715–7.

    Article  PubMed  Google Scholar 

  49. Jacobs AH, Thomas A, Kracht LW, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med. 2005;46(12):1948–58.

    CAS  PubMed  Google Scholar 

  50. Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10(21):7163–70.

    Article  CAS  PubMed  Google Scholar 

  51. Vincenzo Barbagallo GM, Certo F, Di Gregorio S, et al. Recurrent high-grade glioma surgery: a multimodal intraoperative protocol to safely increase extent of tumor resection and analysis of its impact on patient outcome. Neurosurg Focus. 2021;50(1):E20.

    Article  Google Scholar 

  52. Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci. 2006;246(1–2):85–94.

    Article  PubMed  CAS  Google Scholar 

  53. Kazazi-Hyseni F, Beijnen JH, Schellens JHM. Bevacizumab. Oncologist. 2010;15(8):819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deuschl C, Moenninghoff C, Goericke S, et al. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study. Eur J Nucl Med Mol Imaging. 2017;44(8):1285–95.

    Article  CAS  PubMed  Google Scholar 

  55. Sutinen E, Jyrkkiö S, Grönroos T, Haaparanta M, Lehikoinen P, Någren K. Biodistribution of [11 C] methylaminoisobutyric acid, a tracer for PET studies on system a amino acid transport in vivo. Eur J Nucl Med. 2001;28(7):847–54.

    Article  CAS  PubMed  Google Scholar 

  56. Nishii R, Higashi T, Kagawa S, et al. Differential diagnosis between low-grade and high-grade astrocytoma using system a amino acid transport PET imaging with C-11-MeAIB: a comparison study with C-11-methionine PET imaging. Contrast Media Mol Imaging. 2018;2018:1292746.

    PubMed  PubMed Central  Google Scholar 

  57. Law I, Albert NL, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18 F] FDG: version 1.0. Eur J Nucl Med Mol I. 2019;46(3):540–57.

    Article  CAS  Google Scholar 

  58. Kracht LW, Friese M, Herholz K, et al. Methyl-[11 C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol I. 2003;30(6):868–73.

    Article  CAS  Google Scholar 

  59. Derlon J, Chapon F, Noel M, et al. Non-invasive grading of oligodendrogliomas: correlations between in vivo metabolic pattern and histopathology. Eur J Nucl Med. 2000;27(7):778–87.

    Article  CAS  PubMed  Google Scholar 

  60. Saito T, Maruyama T, Muragaki Y, et al. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. Am J Neuroradiol. 2013;34(1):85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Steidl E, Langen K-J, Hmeidan SA, et al. Sequential implementation of DSC-MR perfusion and dynamic [18 F] FET PET allows efficient differentiation of glioma progression from treatment-related changes. Eur J Nucl Med Mol I. 2020;48:1956–65.

    Article  CAS  Google Scholar 

  62. Song S, Wang L, Yang H, et al. Static 18 F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q status. Eur Radiol. 2020;31:4087–96.

    Article  PubMed  CAS  Google Scholar 

  63. Filss CP, Galldiks N, Stoffels G, et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med. 2014;55(4):540–5.

    Article  CAS  PubMed  Google Scholar 

  64. Kebir S, Schmidt T, Weber M, et al. A Preliminary study on machine learning-based evaluation of static and dynamic FET-PET for the detection of pseudoprogression in patients with IDH-wildtype glioblastoma. Cancers (Basel). 2020;12(11):3080.

    Article  Google Scholar 

  65. Galldiks N, Langen K-J, Holy R, et al. Assessment of treatment response in patients with glioblastoma using O−(2-18/F-Fluoroethyl)-l−tyrosine PET in comparison to MRI. J Nucl Med. 2012;53(7):1048–57.

    Article  CAS  PubMed  Google Scholar 

  66. Pöpperl G, Kreth FW, Mehrkens JH, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34(12):1933–42.

    Article  PubMed  Google Scholar 

  67. Galldiks N, Dunkl V, Ceccon G, et al. Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. Eur J Nucl Med Mol I. 2018;45(13):2377–86.

    Article  CAS  Google Scholar 

  68. Verger A, Stoffels G, Bauer EK, et al. Static and dynamic 18 F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol I. 2018;45(3):443–51.

    Article  CAS  Google Scholar 

  69. Jansen NL, Graute V, Armbruster L, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol I. 2012;39(6):1021–9.

    Article  CAS  Google Scholar 

  70. Kebir S, Fimmers R, Galldiks N, et al. Late pseudoprogression in glioblastoma: diagnostic value of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET. Clin Cancer Res. 2016;22(9):2190–6.

    Article  CAS  PubMed  Google Scholar 

  71. Pauleit D, Floeth F, Hamacher K, et al. O-(2-[18F]fluoroethyl)-l-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(3):678–87.

    Article  PubMed  Google Scholar 

  72. Jansen NL, Schwartz C, Graute V, et al. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [18F] FET-PET imaging in intracranial WHO grade II and III gliomas. Neuro-Oncology. 2012;14(12):1473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ceccon G, Lohmann P, Werner J-M, et al. Early treatment response assessment using 18F-FET PET compared to contrast-enhanced MRI in glioma patients following adjuvant temozolomide chemotherapy. J Nucl Med. 2020; https://doi.org/10.2967/jnumed.120.254243.

  74. Kebir S, Rauschenbach L, Weber M, et al. Machine learning-based differentiation between multiple sclerosis and glioma WHO II°-IV° using O-(2-[18F] fluoroethyl)-L-tyrosine positron emission tomography. J Neuro-Oncol. 2021;152:325.

    Article  CAS  Google Scholar 

  75. Galldiks N, Unterrainer M, Judov N, et al. Photopenic defects on O-(2-[18F]-fluoroethyl)-L-tyrosine PET: clinical relevance in glioma patients. Neuro-Oncology. 2019;21(10):1331–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tatekawa H, Hagiwara A, Uetani H, et al. Multiparametric MR-PET measurements in hypermetabolic regions reflect differences in molecular status and tumor grade in treatment-naïve diffuse gliomas. J Neuro-Oncol. 2020;149(2):337–46.

    Article  Google Scholar 

  77. Zaragori T, Ginet M, Marie PY, et al. Use of static and dynamic [(18)F]-F-DOPA PET parameters for detecting patients with glioma recurrence or progression. EJNMMI Res. 2020;10(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fueger BJ, Czernin J, Cloughesy T, et al. Correlation of 6-18F-Fluoro-l-Dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med. 2010;51(10):1532–8.

    Article  PubMed  Google Scholar 

  79. Fraioli F, Shankar A, Hyare H, et al. The use of multiparametric 18F-fluoro-L-3,4-dihydroxy-phenylalanine PET/MRI in post-therapy assessment of patients with gliomas. Nucl Med Commun. 2020;41(6):517–25.

    Article  CAS  PubMed  Google Scholar 

  80. Cicone F, Carideo L, Scaringi C, et al. Long-term metabolic evolution of brain metastases with suspected radiation necrosis following stereotactic radiosurgery: longitudinal assessment by F-DOPA PET. Neuro-Oncology. 2020; https://doi.org/10.1093/neuonc/noaa239.

  81. Verger A, Metellus P, Sala Q, et al. IDH mutation is paradoxically associated with higher 18 F-FDOPA PET uptake in diffuse grade II and grade III gliomas. Eur J Nucl Med Mol I. 2017;44(8):1306–11.

    Article  CAS  Google Scholar 

  82. Schiepers C, Chen W, Cloughesy T, Dahlbom M, Huang S-C. 18F-FDOPA kinetics in brain tumors. J Nucl Med. 2007;48(10):1651–61.

    Article  PubMed  Google Scholar 

  83. Pafundi DH, Laack NN, Youland RS, et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro-Oncology. 2013;15(8):1058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lapa C, Linsenmann T, Monoranu CM, et al. Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55(10):1611–6.

    Article  CAS  PubMed  Google Scholar 

  85. Herrmann K, Czernin J, Cloughesy T, et al. Comparison of visual and semiquantitative analysis of 18F-FDOPA-PET/CT for recurrence detection in glioblastoma patients. Neuro-Oncology. 2014;16(4):603–9.

    Article  PubMed  Google Scholar 

  86. Henderson F Jr, Brem S, O'Rourke DM, et al. (18)F-Fluciclovine PET to distinguish treatment-related effects from disease progression in recurrent glioblastoma: PET fusion with MRI guides neurosurgical sampling. Neurooncol Pract. 2020;7(2):152–7.

    PubMed  Google Scholar 

  87. Karlberg A, Berntsen EM, Johansen H, et al. 18F-FACBC PET/MRI in diagnostic assessment and neurosurgery of gliomas. Clin Nucl Med. 2019;44(7):550–9.

    Article  PubMed  Google Scholar 

  88. Bogsrud TV, Londalen A, Brandal P, et al. 18F-fluciclovine PET/CT in suspected residual or recurrent high-grade glioma. Clin Nucl Med. 2019;44(8):605–11.

    Article  PubMed  Google Scholar 

  89. Wakabayashi T, Iuchi T, Tsuyuguchi N, et al. Diagnostic performance and safety of positron emission tomography using 18F-fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial. Asia Oceania J Nucl Med Biol. 2017;5(1):10–21.

    Google Scholar 

  90. Michaud L, Beattie B, Akhurst T, et al. 18 F-Fluciclovine (18 F-FACBC) PET imaging of recurrent brain tumors. Eur J Nucl Med Mol I. 2020;47(6):1353–67.

    Article  CAS  Google Scholar 

  91. Parent EE, Patel D, Nye JA, et al. [(18)F]-Fluciclovine PET discrimination of recurrent intracranial metastatic disease from radiation necrosis. EJNMMI Res. 2020;10(1):148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Parent EE, Benayoun M, Ibeanu I, et al. [18 F] Fluciclovine PET discrimination between high-and low-grade gliomas. EJNMMI Res. 2018;8(1):1–11.

    Article  CAS  Google Scholar 

  93. Langen K-J, Stoffels G, Filss C, et al. Imaging of amino acid transport in brain tumours: positron emission tomography with O-(2-[18F] fluoroethyl)-L-tyrosine (FET). Methods. 2017;130:124–34.

    Article  CAS  PubMed  Google Scholar 

  94. Wester HJ, Herz M, Weber W, et al. Synthesis and radiopharmacology of O-(2-[18F] fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med. 1999;40(1):205–12.

    CAS  PubMed  Google Scholar 

  95. Weber WA, Wester H-J, Grosu AL, et al. O-(2-[18 F] fluoroethyl)-L-tyrosine and L-[methyl-11 C] methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med. 2000;27(5):542–9.

    Article  CAS  PubMed  Google Scholar 

  96. Salber D, Stoffels G, Pauleit D, et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med. 2007;48(12):2056–62.

    Article  CAS  PubMed  Google Scholar 

  97. Wadhwa A, Bhardwaj A, Singh VV. A review on brain tumor segmentation of MRI images. Magn Reson Imaging. 2019;61:247–59.

    Article  PubMed  Google Scholar 

  98. Jena A, Taneja S, Gambhir A, et al. Single session 18F-FET simultaneous PET/MRI including uptake kinetics in distinguishing glioma recurrence and radiation necrosis. Journal of Nuclear Medicine. 2016;57(supplement 2):31.

    Google Scholar 

  99. Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372(26):2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol. 2011;12(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  101. Rogers TW, Toor G, Drummond K, et al. The 2016 revision of the WHO classification of central nervous system tumours: retrospective application to a cohort of diffuse gliomas. J Neuro-Oncol. 2018;137(1):181–9.

    Article  Google Scholar 

  102. Louis DN, Giannini C, Capper D, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018;135(4):639–42.

    Article  PubMed  Google Scholar 

  103. Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kamson DO. Hypometabolic gliomas on FET-PET—is there an inverted U-curve for survival? Neuro-Oncology. 2019;21(10):1221–2.

    Book  Google Scholar 

  105. Galldiks N, Verger A, Zaragori T, et al. Comment on “Hypometabolic gliomas on FET-PET—is there an inverted U-curve for survival?”. Neuro-Oncology. 2019;21(12):1612–3.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  107. Lambin P, Leijenaar RT, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.

    Article  PubMed  Google Scholar 

  108. Peeken JC, Goldberg T, Pyka T, et al. Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme. Cancer Med. 2019;8(1):128–36.

    Article  PubMed  Google Scholar 

  109. Kebir S, Khurshid Z, Gaertner FC, et al. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma. Oncotarget. 2017;8(5):8294–304.

    Article  PubMed  Google Scholar 

  110. Lohmann P, Elahmadawy MA, Gutsche R, et al. FET PET radiomics for differentiating pseudoprogression from early tumor progression in glioma patients post-chemoradiation. Cancers (Basel). 2020; 12(12).

    Google Scholar 

  111. Bumes E, Wirtz FP, Fellner C, et al. Non-invasive prediction of IDH mutation in patients with Glioma WHO II/III/IV based on F-18-FET PET-guided in vivo (1)H-magnetic resonance spectroscopy and machine learning. Cancers (Basel). 2020; 12(11).

    Google Scholar 

  112. Endres CJ, DeJesus OT, Uno H, Doudet DJ, Nickles JR, Holden JE. Time profile of cerebral [18F]6-fluoro-L-DOPA metabolites in nonhuman primate: implications for the kinetics of therapeutic L-DOPA. Front Biosci. 2004;9:505–12.

    Article  CAS  PubMed  Google Scholar 

  113. Calabria F, Chiaravalloti A, Di Pietro B, Grasso C, Schillaci O. Molecular imaging of brain tumors with 18F-DOPA PET and PET/CT. Nucl Med Commun. 2012;33(6):563–70.

    Article  PubMed  Google Scholar 

  114. Herholz K, Hölzer T, Bauer B, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50(5):1316–22.

    Article  CAS  PubMed  Google Scholar 

  115. Rapp M, Heinzel A, Galldiks N, et al. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med. 2013;54(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  116. Kondo A, Ishii H, Aoki S, et al. Phase IIa clinical study of [(18)F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 2016;30(9):608–18.

    Article  CAS  PubMed  Google Scholar 

  117. Galldiks N, Ullrich R, Schroeter M, Fink GR, Kracht LW. Volumetry of [11 C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol I. 2010;37(1):84–92.

    Article  Google Scholar 

  118. Lohmann P, Herzog H, Kops ER, et al. Dual-time-point O-(2-[18 F] fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol. 2015;25(10):3017–24.

    Article  PubMed  Google Scholar 

  119. Albert NL, Winkelmann I, Suchorska B, et al. Early static 18 F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans. Eur J Nucl Med Mol I. 2016;43(6):1105–14.

    Article  Google Scholar 

  120. Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49(5):694–9.

    Article  PubMed  Google Scholar 

  121. Galldiks N, Stoffels G, Filss C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncology. 2015;17(9):1293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Law I, Albert NL, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57.

    Article  CAS  PubMed  Google Scholar 

  123. Oka S, Okudaira H, Ono M, et al. Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol. 2014;16(3):322–9.

    Article  PubMed  Google Scholar 

  124. Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with (18)F-fluciclovine: a comparative study with L-methyl-(11)C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5(2):85–94.

    PubMed  PubMed Central  Google Scholar 

  125. Henderson F Jr, Brem S, O’Rourke DM, et al. 18F-Fluciclovine PET to distinguish treatment-related effects from disease progression in recurrent glioblastoma: PET fusion with MRI guides neurosurgical sampling. Neuro-oncol Pract. 2020;7(2):152–7.

    Article  Google Scholar 

  126. Dunet V, Rossier C, Buck A, Stupp R, Prior JO. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med. 2012;53(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  127. Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro-Oncology. 2016;18(3):426–34.

    Article  CAS  PubMed  Google Scholar 

  128. Xiao J, Jin Y, Nie J, Chen F, Ma X. Diagnostic and grading accuracy of (18)F-FDOPA PET and PET/CT in patients with gliomas: a systematic review and meta-analysis. BMC Cancer. 2019;19(1):767.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Verburg N, Hoefnagels FWA, Barkhof F, et al. Diagnostic accuracy of neuroimaging to delineate diffuse gliomas within the brain: a meta-analysis. Am J Neuroradiol. 2017;38(10):1884–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Katsanos AH, Alexiou GA, Fotopoulos AD, Jabbour P, Kyritsis AP, Sioka C. Performance of 18F-FDG, 11C-methionine, and 18F-FET PET for glioma grading: a meta-analysis. Clin Nucl Med. 2019;44(11):864–9.

    Article  PubMed  Google Scholar 

  131. Falk Delgado A, Falk Delgado A. Discrimination between primary low-grade and high-grade glioma with 11C-methionine PET: a bivariate diagnostic test accuracy meta-analysis. Br J Radiol. 2018;91(1082):20170426.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944–50. s1-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao C, Zhang Y, Wang J. A meta-analysis on the diagnostic performance of (18)F-FDG and (11)C-methionine PET for differentiating brain tumors. AJNR Am J Neuroradiol. 2014;35(6):1058–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Deng S-M, Zhang B, Wu Y-W, Zhang W, Chen Y-Y. Detection of glioma recurrence by 11C-methionine positron emission tomography and dynamic susceptibility contrast-enhanced magnetic resonance imaging: a meta-analysis. Nucl Med Commun. 2013;34(8):758–66.

    Article  CAS  PubMed  Google Scholar 

  135. Xu W, Gao L, Shao A, Zheng J, Zhang J. The performance of 11C-methionine PET in the differential diagnosis of glioma recurrence. Oncotarget. 2017;8(53):91030.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Furuse M, Nonoguchi N, Yamada K, et al. Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: a systematic review. Radiat Oncol. 2019;14(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Aboian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shooli, H., Assadi, M., Nabavizadeh, S.A., Aboian, M. (2022). Amino Acid PET/MRI in Neuro-oncology. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics