Skip to main content

Advertisement

Log in

The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and its Malignant Transformation—An Immunohistochemical Study

  • Original Paper
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Connective tissue growth factor (CTGF), a matricellular protein of the CCN family of extracellular matrix-associated heparin-binding proteins, is highly expressed in various organ fibrosis and several malignant tumors. Although a few studies have been conducted using CTGF in oral submucous fibrosis (OSF) and oral squamous cell carcinoma, no study has demonstrated its relation with various stages of OSF and its malignant transformation. The present study investigated the possible role of CTGF in the pathogenesis of OSF and its malignant transformation by using immunohistochemistry. Ten formalin-fixed paraffin-embedded tissue blocks, each of Stage 1 OSF, Stage 2 OSF, Stage 3 OSF, Stage 4 OSF, well- differentiated squamous cell carcinoma (WDSCC) with OSF and WDSCC without OSF were stained for CTGF by immunohistochemistry. Ten cases of healthy buccal mucosa (NOM) were included as controls. The present study demonstrated a statistically significant expression of CTGF in the epithelium and connective tissue of OSF and WDSCC with and without OSF cases against its complete absence in NOM. We observed an upregulation of CTGF expression from NOM to various stages of OSF to WDSCC with or without OSF. A gradual upregulation of the CTGF expression in various stages of OSF to WDSCC (with and without OSF) against its complete absence in NOM suggests that CTGF plays an important role in the pathogenesis of OSF and its malignant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):192–9.

    Article  PubMed  Google Scholar 

  2. Tilakratne WM, Eknayaka RP, Warnakulasuriya S. Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):178–91.

    Article  Google Scholar 

  3. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 2004;85:1.

    PubMed Central  Google Scholar 

  4. Khan I, Agarwal P, Thangjam GS, Radhesh R, Rao SG, Kondaiah P. Role of TGF beta and BMP 7 in the pathogenesis of oral submucous fibrosis. Growth Factors. 2011;29:119–27.

    Article  CAS  PubMed  Google Scholar 

  5. Haque MF, Harris M, Meghji S, Barrett AW. Immunolocalization of cytokines and growth factors in oral submucous fibrosis. Cytokine. 1998;10(9):713–9.

    Article  CAS  PubMed  Google Scholar 

  6. Illeperuma RP, Ryu MH, Kim KY, Tilakaratne WM, Kim J. Relationship of fibrosis and the expression of TGF-β1, MMP‐1, and TIMP‐1 with epithelial dysplasia in oral submucous fibrosis. Oral Med Pathol. 2010;15(1):21–8.

    Article  Google Scholar 

  7. Khan I, Kumar N, Pant I, Narra S, Kondaiah P. Activation of TGF-β pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PLoS ONE. 2012;7(12):e51806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kale AD, Mane DR, Shukla D. Expression of transforming growth factor β and its correlation with lipodystrophy in oral submucous fibrosis: an immunohistochemical study. Med Oral Patol Oral Cir Bucal. 2013;18(1):e12-8.

    Article  PubMed  Google Scholar 

  9. Kamath VV, Satelur KP, Rajkumar K, Krishnamurthy S. Transforming growth factor beta 1 in oral submucous fibrosis: an immunohistochemical study-understanding the pathogenesis. J Dent Res Rev. 2014;1(2):75–80.

    Article  Google Scholar 

  10. Kumar V, Suma S, Kumar BV, Yanduri S, Shyamala K. Correlation between transforming growth factor-beta expression and mast cell count in different grades of oral submucous fibrosis. J Adv Clin Res Insights. 2016;3(4):123–8.

    Article  Google Scholar 

  11. Grotendorst GR. Connective tissue growth factor: a mediator of TGF- β action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol. 1999;181(1):153–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma M, Radhakrishnan R. CTGF is obligatory for TGF-β1 mediated fibrosis in OSMF. Oral Oncol. 2016;56:e10-1.

    Article  CAS  PubMed  Google Scholar 

  14. Lau LF, Lam ST. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res. 1999;248(1):44–57.

    Article  CAS  PubMed  Google Scholar 

  15. Leask A. Trial by CCN2: a standardized test for fibroproliferative disease? J Cell Commun Signal. 2009;3:87–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10(12):945–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010;120(9):3340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leask A, Sa S, Holmes A, Shiwen X, Black CM, Abraham DJ. The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Mol Pathol. 2001;54(3):180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allen JT, Knight RA, Bloor CA, Spiteri MA. Enhanced insulin-like growth factor binding protein-related protein 2 (connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol. 1999;21(6):693–700.

    Article  CAS  PubMed  Google Scholar 

  20. Paradis V, Dargere D, Vidaud M, De Gouville AC, Huet S, Martinez V, Gauthier JM, Ba N, Sobesky R, Ratziu V, Bedossa P. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999;30(4):968–76.

    Article  CAS  PubMed  Google Scholar 

  21. Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 1998;53(4):853–61.

    Article  CAS  PubMed  Google Scholar 

  22. Kantarci A, Black S, Xydas C, Murawel P, Uchida Y, Yucekal-Tuncer B, Atilla G, Emingil G, Uzel MI, Lee A, Firatli E, Sheff M, Hasturk H, Van Dyke TE, Trackman PC. Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. J Pathol. 2006;210(1):59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng YT, Chen HM, Cheng SJ, Chiang CP, Kuo MY. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: modulation by curcumin. Oral Oncol. 2009;45(9):e99−105.

    Article  CAS  PubMed  Google Scholar 

  24. Chu CY, Chang CC, Prakash E, Kuo ML. Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci. 2008;15(6):675–85.

    Article  CAS  PubMed  Google Scholar 

  25. Moritani NH, Kubota S, Nishida T, Kawaki H, Kondo S, Sugahara T, Takigawa M. Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line. Cancer Lett. 2003;192(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  26. Yang MH, Lin BR, Chang CH, Chen ST, Lin SK, Kuo MY, Jeng YM, Kuo ML, Chang CC. Connective tissue growth factor modulates oral squamous cell carcinoma invasion by activating a miR-504/FOXP1 signalling. Oncogene. 2012;31(19):2401–11.

    Article  CAS  PubMed  Google Scholar 

  27. Lai WT, Li YJ, Wu SB, Yang CN, Wu TS, Wei YH, Deng YT. Connective tissue growth factor decreases mitochondrial metabolism through ubiquitin-mediated degradation of mitochondrial transcription factor A in oral squamous cell carcinoma. J Formos Med Assoc. 2018;117(3):212–9.

    Article  CAS  PubMed  Google Scholar 

  28. Otte A, Maier-Lenz H, Dierckx RA. Good clinical practice: historical background and key aspects. Nucl Med Commun. 2005;26(7):563–74.

    Article  PubMed  Google Scholar 

  29. Lai DR, Chen HR, Lin LM, Huang YL, Tsai CC, Lai DR. Clinical evaluation of different treatment methods for oral submucous fibrosis: a 10-year experience with 150 cases. J Oral Pathol Med. 1995;24(9):402–6.

    Article  CAS  PubMed  Google Scholar 

  30. Anneroth G, Batsakis J, Luna M. Review of the literature and a recommended system of malignancy grading in oral squamous cell carcinomas. Scand J Dent Res. 1987;95(3):229–49.

    CAS  PubMed  Google Scholar 

  31. Reiner A, Neumeister B, Spona J, Reiner G, Schemper M, Jakesz R. Immunocytochemical localization of estrogen and progesterone receptor and prognosis in human primary breast cancer. Cancer Res. 1990;50(21):7057–61.

    CAS  PubMed  Google Scholar 

  32. Yanjia H, Xinchun J. The role of epithelial–mesenchymal transition in oral squamous cell carcinoma and oral submucous fibrosis. Clin Chim Acta. 2007;383(1–2):51–6.

    Article  PubMed  CAS  Google Scholar 

  33. Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of pathogenesis and malignant transformation. J Carcinog Mutagen. 2013;S5:002.

    Google Scholar 

  34. Mullis TC, Tang X, Chong KT. Expression of connective tissue growth factor (CTGF/CCN2) in head and neck squamous cell carcinoma. J Clin Pathol. 2008;61(5):606–10.

    Article  CAS  PubMed  Google Scholar 

  35. Kikuchi R, Kikuchi Y, Tsuda H, Maekawa H, Kozaki K, Imoto I, Tamai S, Shiotani A, Iwaya K, Sakamoto M, Sekiya T, Matsubara O. Expression and clinical significance of connective tissue growth factor in advanced head and neck squamous cell cancer. Hum Cell. 2014;27(3):121–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wu YL, Li HY, Zhao XP, Jiao JY, Tang DX, Yan LJ, Wan Q, Pan CB. Mesenchymal stem cell derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells. Cancer Sci. 2017;108(5):897–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang JZ, Yang WH, Deng YT, Chen HM, Kuo MY. Thrombin stimulated connective tissue growth factor (CTGF/CCN2) production in human buccal mucosal fibroblasts: inhibition by epigallocatechin-3-gallate. Head Neck. 2012;34(8):1089–94.

    Article  PubMed  Google Scholar 

  38. Patil AA, Bhavthankar JD, Barpande SR, Mandale MS. Estimation of serum connective tissue growth factor in oral submucous fibrosis patients and its clinico-pathologic correlation. J Int Oral Health. 2015;7(11):84–90.

    Google Scholar 

  39. Gottipamula S, Sundarrajan S, Moorthy A, Padmanabhan S, Sridhar N. Buccal mucosal epithelial cells downregulate CTGF expression in buccal submucosal fibrosis fibroblasts. J Maxillofac Oral Surg. 2018;17(2):254–9.

    Article  PubMed  Google Scholar 

  40. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Derrick T, Luthert PJ, Jama H, Hu VH, Massae P, Essex D, Holland MJ, Burton MJ. Increased epithelial expression of CTGF and S100A7 with elevated subepithelial expression of IL-1β in trachomatous trichiasis. PLoS Negl Trop Dis. 2016;10(6):e0004752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kondaiah P, Pant I, Khan I. Molecular pathways regulated by areca nut in the etiopathogenesis of oral submucous fibrosis. Periodontol 2000. 2019;80(1):213–24.

    Article  PubMed  Google Scholar 

  43. Sonnylal S, Xu S, Jones H, Tam A, Sreeram VR, Ponticos M, Norman J, Agarwal P, Abraham D, deCrombrugghe B. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro. J Cell Sci. 2013;126(Pt 10):2164–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsai CC, Ma RH, Shieh TY. Deficiency in collagen and fibronectin phagocytosis by human buccal mucosa fibroblasts in vitro as a possible mechanism for oral submucous fibrosis. J Oral Pathol Med. 1999;28(2):59–63.

    Article  CAS  PubMed  Google Scholar 

  45. Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–4.

    Article  PubMed  Google Scholar 

  46. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  47. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389–95.

    Article  CAS  PubMed  Google Scholar 

  48. Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18.

    Article  CAS  PubMed  Google Scholar 

  49. Van der Veer WM, Niessen FB, Ferreira JA, Zwiers PJ, de Jong EH, Middelkoop E, Molema G. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans. Wound Repair Regen. 2011;19(3):292–301.

    Article  PubMed  Google Scholar 

  50. Bradham DM, Igarshi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114(6):1285–94.

    Article  PubMed  Google Scholar 

  51. Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 1999;19(4):2958–66.

    Article  PubMed  Google Scholar 

  52. Kubota S, Takigawa M. CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis. 2007;10(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  53. Desai RS, Mamatha GS, Khatri MJ, Shetty SJ. Immunohistochemical expression of CD34 for characterization and quantification of mucosal vasculature and its probable role in malignant transformation of atrophic epithelium in oral submucous fibrosis. Oral Oncol. 2010;46(7):553–8.

    Article  PubMed  CAS  Google Scholar 

  54. Sharada P, Swaminathan U, Nagamalini BR, Kumar KV, Ashwini BK, Lavanya VL. Coalition of E-cadherin and vascular endothelial growth factor expression in predicting malignant transformation in common oral potentially malignant disorders. J Oral Maxillofac Pathol. 2018;22(1):40.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma E, Tyagi N, Gupta V, Narwal A, Vij H, Lakhnotra D. Role of angiogenesis in oral submucous fibrosis using vascular endothelial growth factor and CD34: an immunohistochemical study. Indian J Dent Res. 2019;30(5):755–62.

    Article  PubMed  Google Scholar 

  56. Binnie WH, Cawson RA. A new ultrastructural finding in oral submucous fibrosis. Br J Dermatol. 1972;86(3):286–90.

    Article  CAS  PubMed  Google Scholar 

  57. El-Labban NG, Canniff JP. Ultrastructural findings of muscle degeneration in oral submucous fibrosis. J Oral Pathol Med. 1985;14(9):709–17.

    Article  CAS  Google Scholar 

  58. Rooban T, Saraswathi TR, Al Zainab FH, Devi U, Eligabeth J, Ranganathan K. A light microscopic study of fibrosis involving muscle in oral submucous fibrosis. Indian J Dent Res. 2005;16(4):131–4.

    Article  CAS  PubMed  Google Scholar 

  59. Sumathi MK, Balaji N, Malathi N. A prospective transmission electron microscopic study of muscle status in oral submucous fibrosis along with retrospective analysis of 80 cases of oral submucous fibrosis. J Oral Maxillofac Pathol. 2012;16(3):318–24.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chawla H, Urs AB, Augustine J, Kumar P. Characterization of muscle alteration in oral submucous fibrosis-seeking new evidence. Med Oral Patol Oral Cir Bucal. 2015;20(6):e670-7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu F, Tang W, Chen D, Li M, Gao Y, Zheng H, Chen S. Expression of TGF-β1 and CTGF is associated with fibrosis of denervated sternocleidomastoid muscles in mice. Tohoku J Exp Med. 2016;238(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  62. Rebolledo DL, González D, Faundez-Contreras J, Contreras O, Vio CP, Murphy-Ullrich JE, Lipson KE, Brandan E. Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol. 2019;82:20–37.

    Article  CAS  PubMed  Google Scholar 

  63. Shimo T, Nakanishi T, Nishida T, Asano M, Sasaki A, Kanyama M, Kuboki T, Matsumura T, Takigawa M. Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncol. 2001;61(4):315–22.

    Article  CAS  Google Scholar 

  64. Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 2005;65(19):8887–95.

    Article  PubMed  Google Scholar 

  65. Prime SS, Pring M, Davies M, Paterson IC. TGF-beta signal transduction in oro-facial health and non-malignant disease (part I). Crit Rev Oral Biol Med. 2004;15(6):324–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv S. Desai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study protocol was approved by the Institutional Review Board and the Local Ethics Committee, Nair Hospital Dental College (EC/PG-20/OPATH/2017) and was in compliance with ethical standards of the Declaration of Helsinki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.M., Jain, K., Desai, R.S. et al. The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and its Malignant Transformation—An Immunohistochemical Study. Head and Neck Pathol 15, 817–830 (2021). https://doi.org/10.1007/s12105-020-01270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-020-01270-9

Keywords

Navigation