Skip to main content
Log in

Solid-state NMR sequential assignment of the β-endorphin peptide in its amyloid form

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Insights into the three-dimensional structure of hormone fibrils are crucial for a detailed understanding of how an amyloid structure allows the storage of hormones in secretory vesicles prior to hormone secretion into the blood stream. As an example for various hormone amyloids, we have studied the endogenous opioid neuropeptide β-endorphin in one of its fibril forms. We have achieved the sequential assignment of the chemical shifts of the backbone and side-chain heavy atoms of the fibril. The secondary chemical shift analysis revealed that the β-endorphin peptide adopts three β-strands in its fibril state. This finding fosters the amyloid nature of a hormone at the atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arvan P, Castle D (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332:593–610

    Article  Google Scholar 

  • Astbury WT, Dickinson S, Bailey K (1935) The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem J 29(10):2351–2360

    Article  Google Scholar 

  • Bockmann A et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45(3):319–327

    Article  Google Scholar 

  • Castellani F et al (2003) Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42(39):11476–11483

    Article  Google Scholar 

  • Cool DR et al (1995) Identification of the sorting signal motif within proopiomelanocortin for the regulated secretory pathway. J Biol Chem 270(15):8723–8729

    Article  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203

    Article  Google Scholar 

  • Fowler DM et al (2007) Functional amyloid–from bacteria to humans. Trends Biochem Sci 32(5):217–224

    Article  Google Scholar 

  • Gerdes HH et al (1989) The primary structure of human secretogranin-Ii, a widespread tyrosine-sulfated secretory granule protein that exhibits low Ph-induced and calcium-induced aggregation. J Biol Chem 264(20):12009–12015

    Google Scholar 

  • Glombik MM, Gerdes HH (2000) Signal-mediated sorting of neuropeptides and prohormones: secretory granule biogenesis revisited. Biochimie 82(4):315–326

    Article  Google Scholar 

  • Glombik MM et al (1999) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 18(4):1059–1070

    Article  Google Scholar 

  • Guillemin R et al (1977) beta-Endorphin and adrenocorticotropin are selected concomitantly by the pituitary gland. Science 197(4311):1367–1369

    Article  ADS  Google Scholar 

  • Igumenova TI et al (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126(21):6720–6727

    Article  Google Scholar 

  • Luginbuhl P, Szyperski T, Wuthrich K (1995) Statistical basis for the use of C-13-alpha chemical-shifts in protein-structure determination. J Magn Reson Ser B 109(2):229–233

    Article  Google Scholar 

  • Maji SK et al (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325(5938):328–332

    Article  ADS  Google Scholar 

  • Miller F, de Harven E, Palade GE (1966) The structure of eosinophil leukocyte granules in rodents and in man. J Cell Biol 31(2):349–362

    Article  Google Scholar 

  • Orci L et al (1986) Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J Cell Biol 103(6):2273–2281

    Article  Google Scholar 

  • Schuetz A et al (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1–227). ChemBioChem 11(11):1543–1551

    Article  Google Scholar 

  • Siemer AB et al (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed Engl 44(16):2441–2444

    Article  Google Scholar 

  • Stoller TJ, Shields D (1989) The propeptide of preprosomatostatin mediates intracellular transport and secretion of alpha-globin from mammalian cells. J Cell Biol 108(5):1647–1655

    Article  Google Scholar 

  • Van Melckebeke H et al (2010) Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132(39):13765–13775

    Article  Google Scholar 

  • Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696

    Article  Google Scholar 

  • Wasmer C et al (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526

    Article  ADS  Google Scholar 

  • Wishart DS, Sykes BD (1994) The C-13 chemical-shift index: a simple method for the identification of protein secondary structure using C-13 chemical-shift data. J Biomol NMR 4(2):171–180

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Foundation and an ETH-internal grant. We would like to thank Diego Sanchez for preparing TEV protease, the MS-Service by Louis Bertschi for MALDI-TOF measurements and Nadezhda Nespovitaya for helping in setting up β-endorphin fibrils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Riek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seuring, C., Gath, J., Verasdonck, J. et al. Solid-state NMR sequential assignment of the β-endorphin peptide in its amyloid form. Biomol NMR Assign 10, 259–268 (2016). https://doi.org/10.1007/s12104-016-9681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-016-9681-z

Keywords

Navigation