Skip to main content

Advertisement

Log in

Imaging in Short Stature and Bone Age Estimation

  • Review Article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Short stature in children is a diagnostic challenge to the physician. Bone age assessment can be done using various methods. The causes of short stature are variable; often leading to a series of investigations. The endocrine conditions have typical imaging features. This chapter provides a short overview of the methods of bone age estimation, and imaging findings and algorithmic approach towards a child with short stature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Menon PSN. Disorders of growth. In: Parthasarathy A, editor. IAP Textbook of Pediatrics, 6th ed. New Delhi: Jaypee Publisher; 2016. p. 872–7.

  2. Chaudhary V, Bano S. Imaging in short stature. Indian J Endocrinol Metab. 2012;16:692–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Malina RM. Skeletal age and age verification in youth sport. Sports Med. 2011;41:925–47.

    Article  PubMed  Google Scholar 

  4. Gupta AK. Skeletal maturity assessment. In: Gupta AK, Chowdhury V, Khandelwal N, editors. Diagnostic Radiology on Paediatric Imaging, 3rd edition. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd.; 2004. p. 328–32.

  5. Mughal AM, Hassan N, Ahmed A. Bone age assessment methods: a critical review. Pak J Med Sci. 2014;30:211–5.

    Google Scholar 

  6. Paterson RS. A radiological investigation of the epiphyses of the long bones. J Anat. 1929;64:28–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Flecker H. Roentgenographic observations of the times of appearance of epiphyses and their fusion with the diaphyses. J Anat. 1932;67:118–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pillai MJS. The study of epiphyseal union for determining the age of south Indians. Indian J Med Res. 1936;23:1015–7.

    Google Scholar 

  9. Sharat S, Khanduja PC, Agarwal KN, et al. Skeletal growth in school children. Indian Pediatr. 1970;7:98–110.

    CAS  PubMed  Google Scholar 

  10. Bajaj ID, Bhardwaj OP, Bhardwaj S. Appearance and fusion of important ossification centres, a study in Delhi population. Indian J Med Res. 1967;55:1064–7.

    CAS  PubMed  Google Scholar 

  11. Schmidt S, Koch B, Schulz R, Reisinger W, Schmeling A. Studies in use of the Greulich–Pyle skeletal age method to assess criminal liability. Legal Med. 2008;10:190–5.

    Article  PubMed  Google Scholar 

  12. Gaskin CM, Kahn SL, Bertozzi JC, Bunch PM. Skeletal Development of the Hand and Wrist: A Radiographic Atlas and Digital Bone Age Companion. New York: Oxford University Press; 2011. p. 1–60.

    Book  Google Scholar 

  13. Tanner JM. Growth at Adolescence with a General Consideration of the Effects of Hereditary and Environmental Factors upon Growth and Maturation from Birth to Maturity, 2nd edition. Oxford: Blackwell Scientific; 1962. p. 325.

    Google Scholar 

  14. Taner JM, Whitehouse RH, Cameron N, Marshall WA, Healy MJ, Goldstein H. Assessment of skeletal maturity and prediction of adult height. (TW 2 method); 2nd edition. London: Academic Press; 1983.

    Google Scholar 

  15. Tanner JM, Whitehouse RH, Cameron N, Marshall WA, Healy MJ, Goldstein NH. Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd ed. London: WB Saunders; 2001.

    Google Scholar 

  16. Bull RK, Edwards PD, Kemp PM, Fry S, Hughes IA. Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Arch Dis Child. 1999;81:172–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. King DG, Steventon DM, O’Sullivan MP, et al. Reproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methods. Br J Radiol. 1994;67:848–51.

    Article  CAS  PubMed  Google Scholar 

  18. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018;287:313–22.

    Article  PubMed  Google Scholar 

  19. van Rijn RR, Lequin MH, Thodberg HH. Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr Radiol. 2009;39:591–7.

    Article  PubMed  Google Scholar 

  20. Thodberg HH, Kreiborg S, Juul A, Pedersen KD. The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging. 2009;28:52–66.

    Article  PubMed  Google Scholar 

  21. Maniar B. Skeletal maturity in Indian children. Indian J Pediatr. 1987;54:295–302.

    Article  CAS  PubMed  Google Scholar 

  22. Jain S. Estimation of age from 13 to 21 years. J Forensic Med Toxicol. 1999;16:27–30.

    Google Scholar 

  23. Shimura N, Koyama S, Arisaka O, Imataka M, Sato K, Matsuura M. Assessment of measurement of children’s bone age ultrasonically with sunlight bonage. Clin Pediatr Endocrinol. 2005;14(24):S17–20.

    Google Scholar 

  24. Xu H, Shao H, Wang L, Jin J, Wang J. A methodological comparison between ultrasound and X-ray evaluations of bone age. J Sports Sci. 2008;6:27.

    Google Scholar 

  25. Mentzel H-J, Vilser C, Eulenstein M, et al. Assessment of skeletal age at the wrist in children with a new ultrasound device. Pediatr Radiol. 2005;35:429–33.

    Article  PubMed  Google Scholar 

  26. Pennock AT, Bomar JD, Manning JD. The creation and validation of a knee bone age atlas utilizing MRI. J Bone Joint Surg Am. 2018;100:e20.

    Article  PubMed  Google Scholar 

  27. Terada Y, Kono S, Tamada D, et al. Skeletal age assessment in children using an open compact MRI system. Magn Reson Med. 2013;69:1697–702.

    Article  PubMed  Google Scholar 

  28. Terada Y, Kono S, Uchiumi T, et al. Improved reliability in skeletal age assessment using a pediatric hand MR Scanner with a 0.3T permanent magnet. Magn Reson Med Sci. 2014;13:215–9.

    Article  PubMed  Google Scholar 

  29. Chaudhary V, Bano S. Imaging of pediatric pituitary endocrinopathies. Indian J Endocrinol Metab. 2012;16:682–91.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Delman BN. Imaging of pediatric pituitary abnormalities. Endocrinol Metab Clin N Am. 2009;38:673–98.

    Article  CAS  Google Scholar 

  31. Kulkarni C, Moorthy S, Pullara SK, Rajesh Kannan R, Unnikrishan AG. Pituitary stalk transection syndrome: comparison of clinico-radiological features in adults and children with review of literature. Indian J Radiol Imaging. 2012;22:182–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ioachimescu AG, Hamrahian AH, Stevens M, Zimmerman RS. The pituitary transaction syndrome: multifaceted presentation in adulthood. Pituitary. 2012;15:405–11.

    Article  PubMed  Google Scholar 

  33. Argyropoulou M, Perigram F, Brauner R, Brunelle F. Magnetic resonance imaging in diagnosis of growth hormone deficiency. J Pediatr. 1992;120:886–91.

    Article  CAS  PubMed  Google Scholar 

  34. D’Ambrosio N, Soohoo S, Warshall C, Johnson A, Karimi S. Craniofacial and intracranial manifestations of langerhans cell histiocytosis: report of findings in 100 patients. AJR Am J Roentgenol. 2008;191:589–97.

    Article  PubMed  Google Scholar 

  35. Prayer D, Grois N, Prosch H, et al. MR imaging presentation of intracranial disease associated with langerhans cell histiocytosis. Am J Neuroradiol. 2004;25:880–91.

    PubMed  Google Scholar 

  36. Hamilton BE, Salzman KL, Osborn AG. Anatomic and pathologic spectrum of pituitary infundibulum lesions. AJR. 2007;188:W223–32.

    Article  PubMed  Google Scholar 

  37. Supakul N, Delaney LR, Siddiqui AR, Jennings SG, Eugster EA, Karmazyn B. Ultrasound for primary imaging of congenital hypothyroidism. Am J Roentgenol. 2012;199:W360–6.

    Article  Google Scholar 

  38. Chang YW, Lee DH, Hong YH, Hong HS, Choi DL, Seo DY. Congenital hypothyroidism: analysis of discordant us and scintigraphic findings. Radiology. 2011;258:872–9.

    Article  PubMed  Google Scholar 

  39. Jakubowska A, Grajewska-Ferens M, Brzewski M, Sopylo B. Usefulness of imaging techniques in the diagnostics of precocious puberty in boys. Pol J Radiol. 2011;76:21–7.

    PubMed  PubMed Central  Google Scholar 

  40. Pectasides D, Pectasides E, Psyrri A. Granulosa cell tumor of the ovary. Cancer Treat Rev. 2008;34:1–12.

    Article  CAS  PubMed  Google Scholar 

  41. Gittleman AM, Price AP, Coren C, Akhtar M, Donovan V, Katz DS. Radiology-pathology conference: juvenile granulosa cell tumor. J Clin Imag. 2003;27:221–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AKG Manuscript conceptualization, manuscript drafting and proof checking; MJ Manuscript drafting, reference checking and providing figs. AK Manuscript and reference checking and proof checking. AK is the guarantor for this article.

Corresponding author

Correspondence to Manisha Jana.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Jana, M. & Kumar, A. Imaging in Short Stature and Bone Age Estimation. Indian J Pediatr 86, 939–951 (2019). https://doi.org/10.1007/s12098-019-02920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-019-02920-9

Keywords

Navigation