Skip to main content

Advertisement

Log in

Complex roles of discoidin domain receptor tyrosine kinases in cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Discoidin domain receptors, DDR1 and DDR2 are members of the receptor tyrosine kinase (RTK) family that serves as a non-integrin collagen receptor and were initially identified as critical regulators of embryonic development and cellular homeostasis. In recent years, numerous studies have focused on the role of these receptors in disease development, in particular, cancer where they have been reported to augment ECM remodeling, invasion, drug resistance to facilitate tumor progression and metastasis. Interestingly, accumulating evidence also suggests that DDRs promote apoptosis and suppress tumor progression in various human cancers due to which their functions in cancer remain ill-defined and presents a case of an interesting therapeutic target. The present review has discussed the role of DDRs in tumorigenesis and the metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34. https://doi.org/10.1016/j.cell.2010.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol. 2014;310:39–87.

    Article  CAS  Google Scholar 

  3. El Azreq M-A, Kadiri M, Boisvert M, Pagé N, Tessier PA, Aoudjit F. Discoidin domain receptor 1 promotes Th17 cell migration by activating the RhoA/ROCK/MAPK/ERK signaling pathway. Oncotarget. 2016;7(29):44975.

    Article  Google Scholar 

  4. Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell. 1997;1(1):13–23. https://doi.org/10.1016/s1097-2765(00)80003-9.

    Article  CAS  PubMed  Google Scholar 

  5. Shrivastava A, Radziejewski C, Campbell E, Kovac L, McGlynn M, Ryan TE, et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell. 1997;1(1):25–34. https://doi.org/10.1016/S1097-2765(00)80004-0.

    Article  CAS  PubMed  Google Scholar 

  6. Bhatt RS, Tomoda T, Fang Y, Hatten ME. Discoidin domain receptor 1 functions in axon extension of cerebellar granule neurons. Genes Dev. 2000;14(17):2216–28. https://doi.org/10.1101/gad.821600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Manes S, et al. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep. 2001;2(5):446–52. https://doi.org/10.1093/embo-reports/kve094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Su J, Yu J, Bu X, Ren T, Liu X, et al. An essential role of discoidin domain receptor 2 (DDR2) in osteoblast differentiation and chondrocyte maturation via modulation of Runx2 activation. J Bone Miner Res. 2011;26(3):604–17. https://doi.org/10.1002/jbmr.225.

    Article  CAS  PubMed  Google Scholar 

  9. Vogel WF, Aszódi A, Alves F, Pawson T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol. 2001;21(8):2906–17. https://doi.org/10.1128/MCB.21.8.2906-2917.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hou G, Vogel W, Bendeck MP. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest. 2001;107(6):727–35.

    Article  CAS  Google Scholar 

  11. Edelhoff S, Sweetser DA, Disteche CM. Mapping of the NEP receptor tyrosine kinase gene to human chromosome 6p21.3 and mouse chromosome 17C. Genomics. 1995;25(1):309–11. doi:https://doi.org/10.1016/0888-7543(95)80144-b.

  12. Dorison A, Dussaule JC, Chatziantoniou C. The Role of Discoidin Domain Receptor 1 in Inflammation. Fibrosis Renal Dis Nephron. 2017;137(3):212–20. https://doi.org/10.1159/000479119.

    Article  CAS  Google Scholar 

  13. Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metast Rev. 2012;31(1–2):295–321. https://doi.org/10.1007/s10555-012-9346-z.

    Article  CAS  Google Scholar 

  14. Abdulhussein R, Koo DH, Vogel WF. Identification of disulfide-linked dimers of the receptor tyrosine kinase DDR1. J Biol Chem. 2008;283(18):12026–33.

    Article  CAS  Google Scholar 

  15. Karn T, Holtrich U, Bräuninger A, Böhme B, Wolf G, Rübsamen-Waigmann H, et al. Structure, expression and chromosmal mapping of TKT from man and mouse: a new subclass of receptor tyrosine kinases with a factor VIII-like domain. Oncogene. 1993;8:3433.

    CAS  PubMed  Google Scholar 

  16. Lai C, Lemke G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron. 1991;6(5):691–704. https://doi.org/10.1016/0896-6273(91)90167-x.

    Article  CAS  PubMed  Google Scholar 

  17. Leitinger B. Transmembrane collagen receptors. Annu Rev Cell Dev Biol. 2011;27:265–90.

    Article  CAS  Google Scholar 

  18. Fu HL, Valiathan RR, Arkwright R, Sohail A, Mihai C, Kumarasiri M, et al. Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J Biol Chem. 2013;288(11):7430–7. https://doi.org/10.1074/jbc.R112.444158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schlessinger J. Direct binding and activation of receptor tyrosine kinases by collagen. Cell. 1997;91(7):869–72. https://doi.org/10.1016/s0092-8674(00)80477-8.

    Article  CAS  PubMed  Google Scholar 

  20. Leitinger B, Kwan AP. The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biol. 2006;25(6):355–64. https://doi.org/10.1016/j.matbio.2006.05.006.

    Article  CAS  PubMed  Google Scholar 

  21. Leitinger B. Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2. J Biol Chem. 2003;278(19):16761–9. https://doi.org/10.1074/jbc.M301370200.

    Article  CAS  PubMed  Google Scholar 

  22. Ichikawa O, Osawa M, Nishida N, Goshima N, Nomura N, Shimada I. Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J. 2007;26(18):4168–76. https://doi.org/10.1038/sj.emboj.7601833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Konitsiotis AD, Raynal N, Bihan D, Hohenester E, Farndale RW, Leitinger B. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J Biol Chem. 2008;283(11):6861–8. https://doi.org/10.1074/jbc.M709290200.

    Article  CAS  PubMed  Google Scholar 

  24. Carafoli F, Bihan D, Stathopoulos S, Konitsiotis AD, Kvansakul M, Farndale RW, et al. Crystallographic insight into collagen recognition by discoidin domain receptor 2. Structure. 2009;17(12):1573–81. https://doi.org/10.1016/j.str.2009.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hohenester E, Sasaki T, Giudici C, Farndale RW, Bachinger HP. Structural basis of sequence-specific collagen recognition by SPARC. Proc Natl Acad Sci USA. 2008;105(47):18273–7. https://doi.org/10.1073/pnas.0808452105.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu H, Raynal N, Stathopoulos S, Myllyharju J, Farndale RW, Leitinger B. Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biol. 2011;30(1):16–26. https://doi.org/10.1016/j.matbio.2010.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):1–15.

    Article  Google Scholar 

  28. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178(3):1221–32.

    Article  Google Scholar 

  29. Curat CA, Eck M, Dervillez X, Vogel WF. Mapping of epitopes in discoidin domain receptor 1 critical for collagen binding. J Biol Chem. 2001;276(49):45952–8. https://doi.org/10.1074/jbc.M104360200.

    Article  CAS  PubMed  Google Scholar 

  30. Yang SH, Baek HA, Lee HJ, Park HS, Jang KY, Kang MJ, et al. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung carcinomas. Oncol Rep. 2010;24(2):311–9. https://doi.org/10.3892/or_00000861.

    Article  CAS  PubMed  Google Scholar 

  31. Ford CE, Lau SK, Zhu CQ, Andersson T, Tsao MS, Vogel WF. Expression and mutation analysis of the discoidin domain receptors 1 and 2 in non-small cell lung carcinoma. Br J Cancer. 2007;96(5):808–14. https://doi.org/10.1038/sj.bjc.6603614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miao L, Zhu S, Wang Y, Li Y, Ding J, Dai J, et al. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung cancer and promotes cell invasion via epithelial-to-mesenchymal transition. Med Oncol. 2013;30(3):626. https://doi.org/10.1007/s12032-013-0626-4.

    Article  CAS  PubMed  Google Scholar 

  33. Valencia K, Ormazabal C, Zandueta C, Luis-Ravelo D, Anton I, Pajares MJ, et al. Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin Cancer Res. 2012;18(4):969–80. https://doi.org/10.1158/1078-0432.CCR-11-1686.

    Article  CAS  PubMed  Google Scholar 

  34. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203. https://doi.org/10.1016/j.cell.2007.11.025.

    Article  CAS  PubMed  Google Scholar 

  35. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65(17):7591–5. https://doi.org/10.1158/0008-5472.CAN-05-1855.

    Article  CAS  PubMed  Google Scholar 

  36. Lee MS, Jung EA, An SB, Kim YJ, Oh DY, Song JY, et al. Prevalence of mutations in discoidin domain-containing receptor tyrosine kinase 2 (DDR2) in squamous cell lung cancers in Korean patients. Cancer Res Treatment. 2017;49(4):1065–76. https://doi.org/10.4143/crt.2016.347.

    Article  CAS  Google Scholar 

  37. Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1(1):78–89. https://doi.org/10.1158/2159-8274.CD-11-0005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Terashima M, Togashi Y, Sato K, Mizuuchi H, Sakai K, Suda K, et al. Functional analyses of mutations in receptor tyrosine kinase genes in non-small cell lung cancer: double-edged sword of DDR2. Clin Cancer Res. 2016;22(14):3663–71. https://doi.org/10.1158/1078-0432.CCR-15-2093.

    Article  CAS  PubMed  Google Scholar 

  39. Fathi Z, Mousavi SAJ, Roudi R, Ghazi F. Distribution of KRAS, DDR2, and TP53 gene mutations in lung cancer: an analysis of Iranian patients. PLoS ONE. 2018;13(7):e0200633. https://doi.org/10.1371/journal.pone.0200633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laval S, Butler R, Shelling AN, Hanby AM, Poulsom R, Ganesan TS. Isolation and characterization of an epithelial-specific receptor tyrosine kinase from an ovarian cancer cell line. Cell Growth Differ. 1994;5(11):1173–83.

    CAS  PubMed  Google Scholar 

  41. Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry J, Scolyer RA, Davies MJ, et al. Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin Cancer Res. 2004;10(13):4427–36. https://doi.org/10.1158/1078-0432.CCR-04-0073.

    Article  CAS  PubMed  Google Scholar 

  42. Quan J, Yahata T, Adachi S, Yoshihara K, Tanaka K. Identification of receptor tyrosine kinase, discoidin domain receptor 1 (DDR1), as a potential biomarker for serous ovarian cancer. Int J Mol Sci. 2011;12(2):971–82. https://doi.org/10.3390/ijms12020971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colas E, Perez C, Cabrera S, Pedrola N, Monge M, Castellvi J, et al. Molecular markers of endometrial carcinoma detected in uterine aspirates. Int J Cancer. 2011;129(10):2435–44. https://doi.org/10.1002/ijc.25901.

    Article  CAS  PubMed  Google Scholar 

  44. Deng Y, Zhao F, Hui L, Li X, Zhang D, Lin W, et al. Suppressing miR-199a-3p by promoter methylation contributes to tumor aggressiveness and cisplatin resistance of ovarian cancer through promoting DDR1 expression. J Ovarian Res. 2017;10(1):50. https://doi.org/10.1186/s13048-017-0333-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grither WR, Divine LM, Meller EH, Wilke DJ, Desai RA, Loza AJ, et al. TWIST1 induces expression of discoidin domain receptor 2 to promote ovarian cancer metastasis. Oncogene. 2018;37(13):1714–29. https://doi.org/10.1038/s41388-017-0043-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie R, Wang X, Qi G, Wu Z, Wei R, Li P, et al. DDR1 enhances invasion and metastasis of gastric cancer via epithelial-mesenchymal transition. Tumour Biol. 2016;37(9):12049–59. https://doi.org/10.1007/s13277-016-5070-6.

    Article  CAS  PubMed  Google Scholar 

  47. Hur H, Ham IH, Lee D, Jin H, Aguilera KY, Oh HJ, et al. Discoidin domain receptor 1 activity drives an aggressive phenotype in gastric carcinoma. BMC Cancer. 2017;17(1):87. https://doi.org/10.1186/s12885-017-3051-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y-G, Xu L, Jia R-R, Wu Q, Wang T, Wei J, et al. DDR2 induces gastric cancer cell activities via activating mTORC2 signaling and is associated with clinicopathological characteristics of gastric cancer. Dig Dis Sci. 2016;61(8):2272–83. https://doi.org/10.1007/s10620-016-4116-3.

    Article  CAS  PubMed  Google Scholar 

  49. Kurashige J, Hasegawa T, Niida A, Sugimachi K, Deng N, Mima K, et al. Integrated molecular profiling of human gastric cancer identifies DDR2 as a potential regulator of peritoneal dissemination. Sci Rep. 2016;6:22371. https://doi.org/10.1038/srep22371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin H, Ham IH, Oh HJ, Bae CA, Lee D, Kim YB, et al. Inhibition of discoidin domain receptor 1 prevents stroma-induced peritoneal metastasis in gastric carcinoma. Mol Cancer Res. 2018;16(10):1590–600. https://doi.org/10.1158/1541-7786.MCR-17-0710.

    Article  CAS  PubMed  Google Scholar 

  51. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. https://doi.org/10.1038/s41575-019-0186-y.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Park HS, Kim KR, Lee HJ, Choi HN, Kim DK, Kim BT, et al. Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase. Oncol Rep. 2007;18(6):1435–41. https://doi.org/10.3892/or.18.6.1435.

    Article  CAS  PubMed  Google Scholar 

  53. Olaso E, Ikeda K, Eng FJ, Xu L, Wang L-H, Lin HC, et al. DDR2 receptor promotes MMP-2–mediated proliferation and invasion by hepatic stellate cells. J Clin Invest. 2001;108(9):1369–78. https://doi.org/10.1172/JCI12373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee J-H, Poudel B, Ki H-H, Nepali S, Lee Y-M, Shin J-S, et al. Complement C1q stimulates the progression of hepatocellular tumor through the activation of discoidin domain receptor 1. Sci Rep. 2018;8(1):4908. https://doi.org/10.1038/s41598-018-23240-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee NO, Park JW, Lee JA, Shim JH, Kong SY, Kim KT, et al. Dual action of a selective cyclooxygenase-2 inhibitor on vascular endothelial growth factor expression in human hepatocellular carcinoma cells: novel involvement of discoidin domain receptor 2. J Cancer Res Clin Oncol. 2012;138(1):73–84. https://doi.org/10.1007/s00432-011-1075-0.

    Article  CAS  PubMed  Google Scholar 

  56. Park JW, Lee YS, Kim JS, Lee SK, Kim BH, Lee JA, et al. Downregulation of discoidin domain receptor 2 decreases tumor growth of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2015;141(11):1973–83. https://doi.org/10.1007/s00432-015-1967-5.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15(6):677–87. https://doi.org/10.1038/ncb2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ren T, Zhang W, Liu X, Zhao H, Zhang J, Zhang J, et al. Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial–mesenchymal transition programme under hypoxia. J Pathol. 2014;234(4):526–37. https://doi.org/10.1002/path.4415.

    Article  CAS  PubMed  Google Scholar 

  59. Vella V, Malaguarnera R, Nicolosi ML, Palladino C, Spoleti C, Massimino M, et al. Discoidin domain receptor 1 modulates insulin receptor signaling and biological responses in breast cancer cells. Oncotarget. 2017;8(26):43248–70. https://doi.org/10.18632/oncotarget.18020.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Belfiore A, Malaguarnera R, Nicolosi ML, Lappano R, Ragusa M, Morrione A, et al. A novel functional crosstalk between DDR1 and the IGF axis and its relevance for breast cancer. Cell Adhes Migr. 2018;12(4):305–14. https://doi.org/10.1080/19336918.2018.1445953.

    Article  CAS  Google Scholar 

  61. Slocum E, Craig A, Villanueva A, Germain D. Parity predisposes breasts to the oncogenic action of PAPP-A and activation of the collagen receptor DDR2. Breast Cancer Res. 2019;21(1):56. https://doi.org/10.1186/s13058-019-1142-z.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Baltes F, Caspers J, Henze S, Schlesinger M, Bendas G. Targeting discoidin domain receptor 1 (DDR1) signaling and Its crosstalk with β1-integrin emerges as a key factor for breast cancer chemosensitization upon collagen type 1 binding. Int J Mol Sci. 2020;21(14):4956.

    Article  CAS  Google Scholar 

  63. Sun X, Gupta K, Wu B, Zhang D, Yuan B, Zhang X, et al. Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulatingadipose stromal interleukin 6 production in mice. J Biol Chem. 2018. https://doi.org/10.1074/jbc.RA117.000672.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gao H, Chakraborty G, Zhang Z, Akalay I, Gadiya M, Gao Y, et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell. 2016;166(1):47–62.

    Article  CAS  Google Scholar 

  65. Das S, Ongusaha PP, Yang YS, Park J-M, Aaronson SA, Lee SW. Discoidin domain receptor 1 receptor tyrosine kinase induces cyclooxygenase-2 and promotes chemoresistance through nuclear factor-κB pathway activation. Can Res. 2006;66(16):8123–30. https://doi.org/10.1158/0008-5472.CAN-06-1215.

    Article  CAS  Google Scholar 

  66. Ren T, Zhang J, Zhang J, Liu X, Yao L. Increased expression of discoidin domain receptor 2 (DDR2): a novel independent prognostic marker of worse outcome in breast cancer patients. Med Oncol. 2013;30(1):397. https://doi.org/10.1007/s12032-012-0397-3.

    Article  CAS  PubMed  Google Scholar 

  67. Toy KA, Valiathan RR, Nunez F, Kidwell KM, Gonzalez ME, Fridman R, et al. Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer. Breast Cancer Res Treat. 2015;150(1):9–18. https://doi.org/10.1007/s10549-015-3285-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Corsa CA, Brenot A, Grither WR, Van Hove S, Loza AJ, Zhang K, et al. The action of discoidin domain receptor 2 in basal tumor cells and stromal cancer-associated fibroblasts is critical for breast cancer metastasis. Cell Rep. 2016;15(11):2510–23. https://doi.org/10.1016/j.celrep.2016.05.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang S, Bu X, Zhao H, Yu J, Wang Y, Li D, et al. A host deficiency of discoidin domain receptor 2 (DDR2) inhibits both tumour angiogenesis and metastasis. J Pathol. 2014;232(4):436–48. https://doi.org/10.1002/path.4311.

    Article  CAS  PubMed  Google Scholar 

  70. Gonzalez ME, Martin EE, Anwar T, Arellano-Garcia C, Medhora N, Lama A, et al. Mesenchymal stem cell-induced DDR2 mediates stromal-breast cancer interactions and metastasis growth. Cell Rep. 2017;18(5):1215–28. https://doi.org/10.1016/j.celrep.2016.12.079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weiner HL, Huang H, Zagzag D, Boyce H, Lichtenbaum R, Ziff EB. Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors. Neurosurgery. 2000;47(6):1400–9.

    Article  CAS  Google Scholar 

  72. Ram R, Lorente G, Nikolich K, Urfer R, Foehr E, Nagavarapu U. Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2. J Neurooncol. 2006;76(3):239–48. https://doi.org/10.1007/s11060-005-6874-1.

    Article  CAS  PubMed  Google Scholar 

  73. Ma YS, Wu ZJ, Bai RZ, Dong H, Xie BX, Wu XH, et al. DRR1 promotes glioblastoma cell invasion and epithelial-mesenchymal transition via regulating AKT activation. Cancer Lett. 2018;423:86–94. https://doi.org/10.1016/j.canlet.2018.03.015.

    Article  CAS  PubMed  Google Scholar 

  74. Agnihotri S, Jalali S, Wilson MR, Danesh A, Li M, Klironomos G, et al. The genomic landscape of schwannoma. Nat Genet. 2016;48(11):1339–48. https://doi.org/10.1038/ng.3688.

    Article  CAS  PubMed  Google Scholar 

  75. Shimada K, Nakamura M, Ishida E, Higuchi T, Yamamoto H, Tsujikawa K, et al. Prostate cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in human prostate cancer. Cancer Sci. 2008;99(1):39–45. https://doi.org/10.1111/j.1349-7006.2007.00655.x.

    Article  CAS  PubMed  Google Scholar 

  76. Azizi R, Salemi Z, Fallahian F, Aghaei M. Inhibition of didscoidin domain receptor 1 reduces epithelial–mesenchymal transition and induce cell-cycle arrest and apoptosis in prostate cancer cell lines. J Cell Physiol. 2019;234(11):19539–52. https://doi.org/10.1002/jcp.28552.

    Article  CAS  PubMed  Google Scholar 

  77. Zhao Z, Zhao S, Luo L, Xiang Q, Zhu Z, Wang J, et al. miR-199b-5p-DDR1-ERK signalling axis suppresses prostate cancer metastasis via inhibiting epithelial-mesenchymal transition. Br J Cancer. 2020;2020:1–13.

    Google Scholar 

  78. Yan Z, Jin S, Wei Z, Huilian H, Zhanhai Y, Yue T, et al. Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein. Biochim Biophys Acta. 2014;1842(9):1350–63. https://doi.org/10.1016/j.bbadis.2014.04.018.

    Article  CAS  PubMed  Google Scholar 

  79. Rudra-Ganguly N, Lowe C, Mattie M, Chang MS, Satpayev D, Verlinsky A, et al. Discoidin domain receptor 1 contributes to tumorigenesis through modulation of TGFBI expression. PLoS ONE. 2014;9(11):e111515. https://doi.org/10.1371/journal.pone.0111515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aguilera KY, Huang H, Du W, Hagopian MM, Wang Z, Hinz S, et al. Inhibition of discoidin domain receptor 1 reduces collagen-mediated tumorigenicity in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2017;16(11):2473–85. https://doi.org/10.1158/1535-7163.MCT-16-0834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR. Collagen I–mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol. 2008;180(6):1277–89.

    Article  CAS  Google Scholar 

  82. Huang H, Svoboda RA, Lazenby AJ, Saowapa J, Chaika N, Ding K, et al. Up-regulation of N-cadherin by collagen I-activated discoidin domain receptor 1 in pancreatic cancer requires the adaptor molecule Shc1. J Biol Chem. 2016;291(44):23208–23.

    Article  CAS  Google Scholar 

  83. Aguilera KY, Rivera LB, Hur H, Carbon JG, Toombs JE, Goldstein CD, et al. Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma. Can Res. 2014;74(4):1032–44.

    Article  CAS  Google Scholar 

  84. Reger de Moura C, Battistella M, Sohail A, Caudron A, Feugeas JP, Podgorniak MP, et al. Discoidin domain receptors: a promising target in melanoma. Pigment Cell Melanoma Res. 2019;32(5):697–707. https://doi.org/10.1111/pcmr.12809.

    Article  CAS  PubMed  Google Scholar 

  85. Xie X, He H, Zhang N, Wang X, Rui W, Xu D, et al. Overexpression of DDR1 promotes migration, invasion, though EMT-related molecule expression and COL4A1/DDR1/MMP-2 signaling axis. Technol Cancer Res Treatment. 2020;19:1533033820973277.

    CAS  Google Scholar 

  86. Badiola I, Villace P, Basaldua I, Olaso E. Downregulation of discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability. Oncol Rep. 2011;26(4):971–8. https://doi.org/10.3892/or.2011.1356.

    Article  CAS  PubMed  Google Scholar 

  87. Poudel B, Lee Y-M, Kim D-K. DDR2 inhibition reduces migration and invasion of murine metastatic melanoma cells by suppressing MMP2/9 expression through ERK/NF-κB pathway. Acta Biochim Biophys Sin. 2015;47(4):292–8. https://doi.org/10.1093/abbs/gmv005.

    Article  CAS  PubMed  Google Scholar 

  88. Rodrigues R, Roque L, Espadinha C, Pinto A, Domingues R, Dinis J, et al. Comparative genomic hybridization, BRAF, RAS, RET, and oligo-array analysis in aneuploid papillary thyroid carcinomas. Oncol Rep. 2007;18(4):917–26. https://doi.org/10.3892/or.18.4.917.

    Article  CAS  PubMed  Google Scholar 

  89. Liang Z, Xie WJ, Zhao M, Cheng GP, Wu MJ. DDR2 facilitates papillary thyroid carcinoma epithelial mesenchymal transition by activating ERK2/Snail1 pathway. Oncol Lett. 2017;14(6):8114–21. https://doi.org/10.3892/ol.2017.7250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li D, Yang Z, Liu Z, Zou Q, Yuan Y. DDR2 and IFITM1 Are Prognostic Markers in Gallbladder Squamous Cell/Adenosquamous Carcinomas and Adenocarcinomas. Pathol Oncol Res. 2019;25(1):157–67. https://doi.org/10.1007/s12253-017-0314-3.

    Article  CAS  PubMed  Google Scholar 

  91. Xu J, Lu W, Zhang S, Zhu C, Ren T, Zhu T, et al. Overexpression of DDR2 contributes to cell invasion and migration in head and neck squamous cell carcinoma. Cancer Biol Ther. 2014;15(5):612–22. https://doi.org/10.4161/cbt.28181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maeyama M, Koga H, Selvendiran K, Yanagimoto C, Hanada S, Taniguchi E, et al. Switching in discoid domain receptor expressions in SLUG-induced epithelial-mesenchymal transition. Cancer. 2008;113(10):2823–31. https://doi.org/10.1002/cncr.23900.

    Article  CAS  PubMed  Google Scholar 

  93. Walsh LA, Nawshad A, Medici D. Discoidin domain receptor 2 is a critical regulator of epithelial–mesenchymal transition. Matrix Biol. 2011;30(4):243–7. https://doi.org/10.1016/j.matbio.2011.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Guo J, Zhao C, Yao R, Sui A, Sun L, Liu X, et al. 3D culture enhances chemoresistance of ALL Jurkat cell line by increasing DDR1 expression. Exp Ther Med. 2019;17(3):1593–600. https://doi.org/10.3892/etm.2019.7153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Curat CA, Vogel WF. Discoidin domain receptor 1 controls growth and adhesion of mesangial cells. J Am Soc Nephrol. 2002;13(11):2648–56. https://doi.org/10.1097/01.asn.0000032419.13208.0c.

    Article  CAS  PubMed  Google Scholar 

  96. Wall SJ, Werner E, Werb Z, DeClerck YA. Discoidin domain receptor 2 mediates tumor cell cycle arrest induced by fibrillar collagen. J Biol Chem. 2005;280(48):40187–94. https://doi.org/10.1074/jbc.M508226200.

    Article  CAS  PubMed  Google Scholar 

  97. Wall SJ, Zhong ZD, DeClerck YA. The cyclin-dependent kinase inhibitors p15INK4B and p21CIP1 are critical regulators of fibrillar collagen-induced tumor cell cycle arrest. J Biol Chem. 2007;282(33):24471–6. https://doi.org/10.1074/jbc.M702697200.

    Article  CAS  PubMed  Google Scholar 

  98. Yeh Y-C, Wu C-C, Wang Y-K, Tang M-J. DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Mol Biol Cell. 2011;22(7):940–53. https://doi.org/10.1091/mbc.E10-08-0678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hansen C, Greengard P, Nairn AC, Andersson T, Vogel WF. Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1. Exp Cell Res. 2006;312(20):4011–8. https://doi.org/10.1016/j.yexcr.2006.09.003.

    Article  CAS  PubMed  Google Scholar 

  100. Assent D, Bourgot I, Hennuy B, Geurts P, Noël A, Foidart J-M, et al. A membrane-type-1 matrix metalloproteinase (MT1-MMP)–discoidin domain receptor 1 axis regulates collagen-induced apoptosis in breast cancer cells. PLoS ONE. 2015;10(3):e0116006. https://doi.org/10.1371/journal.pone.0116006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Saby C, Collin G, Sinane M, Buache E, Van Gulick L, Saltel F, et al. DDR1 and MT1-MMP expression levels are determinant for triggering BIK-mediated apoptosis by 3D type I collagen matrix in invasive basal-like breast carcinoma cells. Front Pharmacol. 2019;10:462. https://doi.org/10.3389/fphar.2019.00462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koh M, Woo Y, Valiathan RR, Jung HY, Park SY, Kim YN, et al. Discoidin domain receptor 1 is a novel transcriptional target of ZEB 1 in breast epithelial cells undergoing H-R as-induced epithelial to mesenchymal transition. Int J Cancer. 2015;136(6):E508–20. https://doi.org/10.1002/ijc.29154.

    Article  CAS  PubMed  Google Scholar 

  103. Takai K, Drain AP, Lawson DA, Littlepage LE, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32(3–4):244–57. https://doi.org/10.1101/gad.301366.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ruggeri JM, Franco-Barraza J, Sohail A, Zhang Y, Long D, di Magliano MP et al. Discoidin Domain Receptor 1 (DDR1) is Necessary for Tissue Homeostasis in Pancreatic Injury and Pathogenesis of Pancreatic Ductal Adenocarcinoma. Am J Pathol 2020.

  105. Iwai LK, Payne LS, Luczynski MT, Chang F, Xu H, Clinton RW, et al. Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants. Biochem J. 2013;454(3):501–13. https://doi.org/10.1042/BJ20121750.

    Article  CAS  PubMed  Google Scholar 

  106. Badiola I, Olaso E, Crende O, Friedman SL, Vidal-Vanaclocha F. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut. 2012;61(10):1465–72. https://doi.org/10.1136/gutjnl-2011-300810.

    Article  PubMed  Google Scholar 

  107. Kano K, Marin de Evsikova C, Young J, Wnek C, Maddatu TP, Nishina PM, et al. A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol. 2008;22(8):1866–80.

    Article  CAS  Google Scholar 

  108. Lai SL, Tan ML, Hollows RJ, Robinson M, Ibrahim M, Margielewska S, et al. Collagen induces a more proliferative, migratory and chemoresistant phenotype in head and neck cancer via DDR1. Cancers (Basel). 2019;11(11):1766. https://doi.org/10.3390/cancers11111766.

    Article  CAS  Google Scholar 

  109. Li S, Zhang Z, Xue J, Guo X, Liang S, Liu A. Effect of hypoxia on DDR1 expression in pituitary adenomas. Med Sci Monitor. 2015;21:2433–8. https://doi.org/10.12659/MSM.894205.

    Article  CAS  Google Scholar 

  110. Zhong X, Zhang W, Sun T. DDR1 promotes breast tumor growth by suppressing antitumor immunity. Oncol Rep. 2019;42(6):2844–54. https://doi.org/10.3892/or.2019.7338.

    Article  CAS  PubMed  Google Scholar 

  111. Ambrogio C, Darbo E, Lee SW, Santamaria D. A putative role for Discoidin Domain Receptor 1 in cancer chemoresistance. Cell Adh Migr. 2018;12(4):394–7. https://doi.org/10.1080/19336918.2018.1445954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E, et al. Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. Eur J Pharmacol. 2008;599(1–3):44–53. https://doi.org/10.1016/j.ejphar.2008.10.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work in part was supported by an extramural research grant [EMR/2015/000761] to HC by the Department of Science and Technology-Science and Engineering Research Board (DST-SERB), Government of India. VM is grateful to ICMR, New Delhi, India for providing him the fellowship (No.3/1/3/JRF-2016/HRD). All the authors are thankful to the Central University of Punjab, Bathinda, India for additional support.

Funding

This study was funded by the Department of Science and Technology-Science and Engineering Research Board (DST-SERB), Government of India (EMR/2015/000761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mehta.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed Consent was not applicable to the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, V., Chander, H. & Munshi, A. Complex roles of discoidin domain receptor tyrosine kinases in cancer. Clin Transl Oncol 23, 1497–1510 (2021). https://doi.org/10.1007/s12094-021-02552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02552-6

Keywords

Navigation