Skip to main content

Advertisement

Log in

FAM83H overexpression predicts worse prognosis and correlates with less CD8+ T cells infiltration and Ras-PI3K-Akt-mTOR signaling pathway in pancreatic cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Family with sequence similarity 83 members H (FAM83H) is one member of Family with sequence similarity 83 (FAM83) family, which possess oncogenic properties in several types of cancer. However, the potential function of FAM83H in pancreatic cancer (PC) still remain unknown.

Aim

This study aims to explore the role of FAM83H during pancreatic carcinogenesis and the regulation of immune infiltration in PC.

Methods

In the current study, the clinical significance and potential biological of FAM83H were evaluated by bioinformatics analysis. Possible associations between FAM83H expression and tumor immunity were analyzed using ESTIMATE algorithm and single-sample gene set enrichment analysis (ssGSEA).

Results

FAM83H expression was significantly upregulated in tumor tissues, and positively associated with higher histologic grade, tumor recurrence, and worse prognosis. FAM83H overexpression is notably associated with KRAS activation. And functional enrichment analysis demonstrated that FAM83H may be involved in positive regulation of cell proliferation and migration, Ras protein signal transduction, regulation of cell–matrix adhesion, epithelial to mesenchymal transition (EMT), TGF-β receptor signaling in EMT, and activated NOTCH transmits signal to the nucleus. ESTIMATE algorithm and ssGSEA demonstrated that FAM83H overexpression suppressed the infiltration and antitumor activity of tumor-infiltrating lymphocytes (TILs), especially for CD8+ T cells. Besides, FAM83H overexpression significantly correlated with low expression of TIL-related gene markers (e.g. CD8A, CD8B, CD2, CD3D, and CD3E).

Conclusion

The study suggests that FAM83H overexpression predicts poor prognosis and correlates with less CD8+ T cells infiltration and Ras-PI3K-Akt-mTOR signaling pathway in PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. Lancet. 2016;388(10039):73–85.

    Article  CAS  PubMed  Google Scholar 

  2. Mishra NK, Southekal S, Guda C. Survival analysis of multi-omics data identifies potential prognostic markers of pancreatic ductal adenocarcinoma. Front Genet. 2019;10:624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bazhin AV, Shevchenko I, Umansky V, et al. Two immune faces of pancreatic adenocarcinoma: possible implication for immunotherapy. Cancer Immunol Immunother. 2014;63(1):59–655.

    Article  CAS  PubMed  Google Scholar 

  4. Cervello M, Emma MR, Augello G, et al. New landscapes and horizons in hepatocellular carcinoma therapy. Aging (Albany NY). 2020;12:3053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schouwenburg MG, Suijkerbuijk KPM, Koornstra RHT, et al. Switching to immune checkpoint inhibitors upon response to targeted therapy; the road to long-term survival in advanced melanoma patients with highly elevated serum LDH? Cancers (Basel). 2019;11(12):1940.

    Article  CAS  Google Scholar 

  6. Balachandran VP, Beatty GL, Dougan SK. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology. 2019;156(7):2056–72.

    Article  CAS  PubMed  Google Scholar 

  7. Cai L, Luo D, Yao B, et al. Systematic analysis of gene expression in lung adenocarcinoma and squamous cell carcinoma with a case study of FAM83A and FAM83B. Cancers (Basel). 2019;11(6):886.

    Article  CAS  Google Scholar 

  8. Cipriano R, Miskimen KL, Bryson BL, et al. Conserved oncogenic behavior of the FAM83 family regulates MAPK signaling in human cancer. Mol Cancer Res. 2014;12(8):1156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuga T, Sasaki M, Mikami T, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee MJ, Lee SK, Lee KE, et al. Expression patterns of the Fam83h gene during murine tooth development. Arch Oral Biol. 2009;54(9):846–50.

    Article  CAS  PubMed  Google Scholar 

  11. Chen C, Li HF, Hu YJ, et al. Family with sequence similarity 83 member H promotes the viability and metastasis of cervical cancer cells and indicates a poor prognosis. Yonsei Med J. 2019;60(7):611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim KM, Hussein UK, Park SH, et al. FAM83H is involved in stabilization of beta-catenin and progression of osteosarcomas. J Exp Clin Cancer Res. 2019;38(1):267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuga T, Kume H, Kawasaki N, et al. A novel mechanism of keratin cytoskeleton organization through casein kinase Ialpha and FAM83H in colorectal cancer. J Cell Sci. 2013;126(Pt 20):4721–31.

    CAS  PubMed  Google Scholar 

  14. Nalla AK, Williams TF, Collins CP, et al. Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome. Mol Carcinog. 2016;55(11):1761–71.

    Article  CAS  PubMed  Google Scholar 

  15. Kim KM, Park SH, Bae JS, et al. FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC. Sci Rep. 2017;7(1):3274.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim KM, Hussein UK, Bae JS, et al. The expression patterns of FAM83H and PANX2 are associated with shorter survival of clear cell renal cell carcinoma patients. Front Oncol. 2019;9:14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10(21):7252–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

    Article  Google Scholar 

  19. Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  Google Scholar 

  20. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782–95.

    Article  CAS  PubMed  Google Scholar 

  21. Van Sciver RE, Lee MP, Lee CD, et al. A new strategy to control and eradicate “undruggable” oncogenic K-RAS-driven pancreatic cancer: molecular insights and core principles learned from developmental and evolutionary biology. Cancers (Basel). 2018;10(5):142.

    Article  PubMed Central  Google Scholar 

  22. Cullis J, Das S, Bar-Sagi D. Kras and tumor immunity: friend or foe? Cold Spring Harb Perspect Med. 2018;8(9):a031849.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte–macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 2012;21(6):822–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El-Jawhari JJ, El-Sherbiny YM, Scott GB, et al. Blocking oncogenic RAS enhances tumour cell surface MHC class I expression but does not alter susceptibility to cytotoxic lymphocytes. Mol Immunol. 2014;58(2):160–8.

    Article  CAS  PubMed  Google Scholar 

  25. Cui LH, Li CX, Zhuo YZ, et al. Saikosaponin d ameliorates pancreatic fibrosis by inhibiting autophagy of pancreatic stellate cells via PI3K/Akt/mTOR pathway. Chem Biol Interact. 2019;300:18–26.

    Article  CAS  PubMed  Google Scholar 

  26. Brown NF, Marshall JF. Integrin-mediated TGFbeta activation modulates the tumour microenvironment. Cancers (Basel). 2019;11(9):1221.

    Article  CAS  PubMed Central  Google Scholar 

  27. Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett. 2020;468:72–81.

    Article  CAS  PubMed  Google Scholar 

  28. Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.

    Article  CAS  PubMed  Google Scholar 

  29. Du X, Zhang S, Cheng Z, et al. Effect of Notch1 signaling pathway activation on pancreatic cancer cell proliferation in vitro. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(10):1494–8.

    CAS  PubMed  Google Scholar 

  30. Maniati E, Bossard M, Cook N, et al. Crosstalk between the canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. J Clin Investig. 2011;121(12):4685–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Villegas SN, Gombos R, Garcia-Lopez L, et al. PI3K/Akt cooperates with oncogenic notch by inducing nitric oxide-dependent inflammation. Cell Rep. 2018;22(10):2541–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mu GG, Zhang LL, Li HY, et al. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of Notch1, PI3K/Akt/mTOR regulated signaling pathways in pancreatic cancer. Dig Dis Sci. 2015;60(4):1067–80.

    Article  CAS  PubMed  Google Scholar 

  33. Sierra RA, Thevenot P, Raber PL, et al. Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunol Res. 2014;2(8):800–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (project NO.: 81702783 and 81672475) and Natural Science Foundation of Guangdong Province (project NO.: 2017A030310574).

Author information

Authors and Affiliations

Authors

Contributions

Conceiving, H-KZ; data curation, H-KZ; funding acquisition, C-ZZ, B-HH; investigation, H-KZ; methodology, H-KZ; resources, C-ZZ, B-HH; validation, H-KZ, C-ZZ; visualization, H-KZ; writing—original draft, H-KZ.

Corresponding authors

Correspondence to C. Zhang or B. Hou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical standards

All datasets (TCGA, GSE62452, GSE60979, GSE28735, and GSE79668) are freely available as public resources. Therefore, local ethics approval was not needed.

Informed consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, H., Zhang, C. & Hou, B. FAM83H overexpression predicts worse prognosis and correlates with less CD8+ T cells infiltration and Ras-PI3K-Akt-mTOR signaling pathway in pancreatic cancer. Clin Transl Oncol 22, 2244–2252 (2020). https://doi.org/10.1007/s12094-020-02365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02365-z

Keywords

Navigation