Skip to main content

Advertisement

Log in

Inhibitory effect and mechanism of mesenchymal stem cells on melanoma cells

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

To explore the inhibitory effect and mechanism of MSCs on melanoma proliferation.

Methods

The inhibitory effect of MSCs on melanoma A375 cells was detected by co-culture and conditioned medium (CM) experiments using MTT method. The cell cycle was analyzed by flow cytometry. Then, Western Blot experiment detected the expression of proteins related to NF-κB signaling in A375 cells. The expression of IL-1Ra in MSCs was proved by RT-PCR. The over-expression and silencing vector pcDNA3.1-EGFP-IL-1Ra and pGPH1-IL-1R were constructed and transfected into MSCs cells. After that, the changes of inhibitory effect and cell cycle from MSCs-S and MSCs-O CM on A375 cells were explored. The expression of proteins related to NF-κB signaling in A375 cells after MSCs-S or MSCs-O CM treatment was detected by Western Blot. MSCs, MSCs-S, or MSCs-O and A375 cells were co-injected into nude mice under the arms, the growth of tumor was observed, the frozen sections were made, and H&E staining of tumor tissue was performed.

Results

The proliferation of A375 cells was inhibited and the cell cycle of A375 was arrested by MSCs. The expressions of cytokines related to NF-κB signaling were down-regulated. Over-expression and silence of Interleukin 1 receptor antagonist (IL-1Ra), specifically blocking activation of NF-κB signaling, indicated that inhibitory effect from MSCs was enhanced or weakened respectively, which suggested that IL-1Ra was involved in the inhibitory effect. In vivo, tumor initiation and growth were significantly inhibited when A375 cells were co-injected with MSCs into nude mice, which were related to the expression level of IL-1Ra.

Conclusion

MSCs could inhibit the proliferation and tumor initiation of melanoma A375 cells through NF-κB signaling. MSCs could secret IL-1Ra and inhibit expressions of NF-κB signaling-related factors of tumor cells, and cause cell cycle arrest in G1 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.

    Article  CAS  PubMed  Google Scholar 

  2. Hung CN, Mar K, Chang HC, Chiang YL, Hu HY, Lai CC, et al. A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials. 2011;32(29):6995–7005.

    Article  CAS  PubMed  Google Scholar 

  3. Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  4. Manuguerra-Gagné R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31(6):1136–48.

    Article  PubMed  Google Scholar 

  5. Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008;64(1):53–9.

    Article  PubMed  Google Scholar 

  6. Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307(11):1169–77.

    Article  CAS  PubMed  Google Scholar 

  7. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34(6):747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500–7.

    Article  CAS  PubMed  Google Scholar 

  9. Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.

    Article  CAS  Google Scholar 

  10. Zhang L, Su XS, Ye JS, Wang YY, Guan Z, Yin YF. Bone marrow mesenchymal stem cells suppress metastatic tumor development in mouse by modulating immune system. Stem Cell Res Ther. 2015;6(1):1–11.

    Article  Google Scholar 

  11. Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013;8(12):e84256.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One. 2013;8(4):e62844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin. 2008;29(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  14. Lynn V, Rudi B. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol. 2014;92(4):519–29.

    Article  Google Scholar 

  15. DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400.

    Article  PubMed  Google Scholar 

  16. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  17. Bernard WS, Christopher PW. World cancer report 2014. France: International Agency for Research on Cancer; 2014. ISBN 978-92-832-0432-9.

    Google Scholar 

  18. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2013;467(7315):596–9.

    Article  Google Scholar 

  19. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  20. Seckinger P, Lowenthal JW, Williamson K, Dayer JM, MacDonald HR. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol. 1987;139(5):1546–9.

    CAS  PubMed  Google Scholar 

  21. Lukic ML, Stosic-Grujicic S, Ostojic N, Chan WL, Liew FY. Inhibition of nitric oxide generation affects the induction of diabetes by streptozotocin in mice. Biochem Biophys Res Commun. 1991;178(3):913–20.

    Article  CAS  PubMed  Google Scholar 

  22. Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.

    Article  CAS  PubMed  Google Scholar 

  23. Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1RA) are mediated by glia. Glia. 2006;53(5):551–6.

    Article  PubMed  Google Scholar 

  24. Vezzani A, Balosso S, Maroso M, Zardoni D, Noé F, Ravizza T. ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs. 2010;11(1):43–50.

    CAS  PubMed  Google Scholar 

  25. Weinreich DM, Elaraj DM, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, et al. Effect of interleukin 1 receptor antagonist gene transduction on human melanoma xenografts in nude mice. Cancer Res. 2003;63(18):597–661.

    Google Scholar 

  26. Helena KS. Proteomic techniques for characterization of mesenchymal stem cell secretome. Biochimie. 2013;95(12):2196–211.

    Article  Google Scholar 

  27. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigen and recall antigens. J Immunol. 2003;171(7):3426–34.

    Article  CAS  PubMed  Google Scholar 

  28. Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, et al. Co-transplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following non-myeloablative conditioning. Biol Blood Marrow Transplant. 2010;16(6):838–47.

    Article  PubMed  Google Scholar 

  29. Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 2009;43(6):447–54.

    Article  CAS  PubMed  Google Scholar 

  30. Niess H, von Einem JC, Thomas MN, Michl M, Angele MK, Huss R, et al. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer. 2015;15(1):237.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bian ZY, Fan QM, Li G, Xu WT, Tang TT. Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Sci. 2010;101(12):2554–60.

    Article  CAS  PubMed  Google Scholar 

  32. Sasser AK, Mundy BL, Smith KM, Studebaker AW, Axel AE, Haidet AM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett. 2007;254(2):255–64.

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011;17(7–8):579–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Santamaria-Martiínez A, Barguinero J, Barbosa-Desongles A, Hurtado A, Pinós T, Seoane J, et al. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res. 2009;315(7):3004–13.

    Article  Google Scholar 

  35. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tyciakova S, Matuskova M, Bohovic R, Kucerova L. Mesenchymal stromal cells producing TNFα lack inhibitory effect against A375 experimental lung metastases. Neoplasma. 2017;64(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Ma D, Li Y, Yang Y, Hu X, Zhang W, et al. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles. Anticancer Drugs. 2014;25(3):303–14.

    Article  CAS  PubMed  Google Scholar 

  38. Keishi O, Shonit D, Sandra DH, Sadiga KQ, Sunita B, Jahar B. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.

    Article  Google Scholar 

  39. Lacerda L, Debeb BG, Smith D, Larson R, Solley T, Xu W, et al. Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Res. 2015;17(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent anti-tumorigenic effects in model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tian LL, Yue W, Zhu F, Li S, Li W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol. 2011;226(7):186–7.

    Google Scholar 

  42. Gavriele M, Claudio DU, Giusy G, Giuseppe P, Paolo AA. NF-κB as potential target in the treatment of melanoma. J Transl Med. 2012;10:53.

    Article  Google Scholar 

  43. Kashani-Sabet M, Shaikh L, Miller JR 3rd, Nosrati M, Ferreira CM, Debs RJ, et al. NF-kappa B in the vascular progression of melanoma. J Clin Oncol. 2004;22(4):617–23.

    Article  CAS  PubMed  Google Scholar 

  44. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappa B function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 1999;19(4):2690–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappa B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19(8):5785–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bruserud O, Aasen I, Akselsen PE, Bergheim J, Rasmussen G, Nesthus I. Interleukin 1 receptor antagonist (IL-1Ra) in acute leukaemia: IL-1Ra is both secreted spontaneously by myelogenous leukemia blasts and is a part of the acute phase reaction in patients with chemotherapy-induced leucopenia. Eur J Haematol. 1996;57(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  47. Gherardi RK, Bélec L, Soubrier M, Malapert D, Zuber M, Viard JP, et al. Overproduction of pro-inflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood. 1996;87(4):1458–65.

    CAS  PubMed  Google Scholar 

  48. Iwagaki H, Hizuta A, Tanaka N. Inteleukin-1 receptor antagonists and other markers in colorectal cancer patients. Scand J Gastroenterol. 1997;32(6):577–81.

    Article  CAS  PubMed  Google Scholar 

  49. Parekh DJ, Ankerst DP, Baillargeon J, Higgins B, Platz EA, Troyer D, et al. Assessment of 54 biomarkers for biopsy-detectable prostate cancer. Cancer Epidemiol Biomark Prev. 2007;16(10):1966–72.

    Article  CAS  Google Scholar 

  50. Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, et al. Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol. 2012;14(3):257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81201762) and the National High Technology Research and Development Program (863 Program) of China (2014AA021605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hou, L., Zhao, D. et al. Inhibitory effect and mechanism of mesenchymal stem cells on melanoma cells. Clin Transl Oncol 19, 1358–1374 (2017). https://doi.org/10.1007/s12094-017-1677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1677-3

Keywords

Navigation