Skip to main content

Advertisement

Log in

Biodetection Strategies for Selective Identification of Candidiasis

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungi are among the predominant pathogens seen in a greater proportion of infections acquired in healthcare settings. A common fungus that causes infections in medical settings is Candida species. Hospitalized patients who suffer from fungal diseases such as candidiasis and candidemia often have elevated rates of mortality and morbidity. It is evident that longer hospital stays have the possibility of bacterial and fungal recurrence and also have a negative economic impact. If left untreated, a Candida infection can spread to other organs and cause a systemic infection that can result in sepsis. Clinicians can treat patients quickly when fungal infections are timely detected, this enhances the results of clinical trials. Developing novel, sensitive, and quick methods for detecting Candida species is imperative. Conventional detection techniques are unsuitable for clinical settings and point-of-care systems as they require expensive equipment and take a longer detection time. This review examines a few of the most widely used biosensor systems for the detection of Candida species, their sensitivity, and the limit of detection. It focuses on various biorecognition elements used and follows utilization and advances in nanotechnology in the context of sensing. In addition to enabling general analysis and quick real-time analysis, crucial for detecting Candida species, biosensors provide an intriguing alternative to more conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ISFET:

Ion-sensitive field-effect transistor

NAC:

N-acetylcysteine

BMT:

Bone marrow transplantation

OC:

Oral candidiasis

BSA:

Broad spectrum antibiotic

PNA-FISH:

Peptide nucleic acid fluorescent in situ hybridization

SWCNTs:

Single-walled carbon nanotubes

SPR:

Surface plasmon resonance

FET:

Field-effect transistor

SAM:

Self-assemble monolayer

SERS:

Surface-enhanced Raman spectral

NP:

Nanoparticle

LOD:

Limit of detection

AuNP:

Gold nanoparticle

C. albicans :

Candida albicans

NMR:

Nuclear magnetic resonance

References

  1. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36. https://doi.org/10.1016/S0966-842X(02)00002-1

    Article  CAS  PubMed  Google Scholar 

  2. Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51:2–15. https://doi.org/10.1111/j.1439-0507.2008.01606.x

    Article  PubMed  Google Scholar 

  3. Odds FC (1994) Pathogenesis of Candida infections. J Am Acad Dermatol 31:S2–S5. https://doi.org/10.1016/S0190-9622(08)81257-1

    Article  CAS  PubMed  Google Scholar 

  4. Lim CS-Y, Rosli R, Seow HF, Chong PP (2012) Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis 31:21–31. https://doi.org/10.1007/s10096-011-1273-3

    Article  PubMed  Google Scholar 

  5. Rodrigues ME, Silva S, Azeredo J, Henriques M (2016) Novel strategies to fight Candida species infection. Crit Rev Microbiol 42:594–606. https://doi.org/10.3109/1040841X.2014.974500

    Article  CAS  PubMed  Google Scholar 

  6. Magill SS et al (2014) Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:1198–1208. https://doi.org/10.1056/NEJMoa1306801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He Z-X, Shi L-C, Ran X-Y, Li W, Wang X-L, Wang F-K (2016) Development of a lateral flow immunoassay for the rapid diagnosis of invasive candidiasis. Front Microbiol 7:1451. https://doi.org/10.3389/fmicb.2016.01451

    Article  PubMed  PubMed Central  Google Scholar 

  8. Neppelenbroek KH et al (2014) Identification of Candida species in the clinical laboratory: a review of conventional, commercial, and molecular techniques. Oral Dis 20:329–344. https://doi.org/10.1111/odi.12123

    Article  CAS  PubMed  Google Scholar 

  9. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications—an overview. Front Bioeng Biotechnol 4:11. https://doi.org/10.3389/fbioe.2016.00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodovalho VR, Alves LM, Castro ACH, Madurro JM, Brito-Madurro AG, Santos AR (2015) Biosensors applied to diagnosis of infectious diseases–an update. Austin J Biosens Bioelectron 1:10–15

    Google Scholar 

  11. da Silva-Junio AG et al (2022) Electrochemical biosensor based on Temporin-PTA peptide for detection of microorganisms. J Pharm Biomed Anal 216:114788. https://doi.org/10.1016/j.jpba.2022.114788

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro KL et al (2021) Impedimetric clavmo peptide-based sensor differentiates ploidy of candida species. Biochem Eng J 167:107918. https://doi.org/10.1016/j.bej.2020.107918

    Article  CAS  Google Scholar 

  13. Singh S, Kumar V, Dhanjal DS, Thotapalli S, Sonali, Singh J (2020) Importance and recent aspects of fungal-based biosensors. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, New York, pp 301–309. https://doi.org/10.1016/B978-0-12-821008-6.00018-9

  14. Patel A et al (2021) Multicenter epidemiologic study of coronavirus disease-associated mucormycosis, India. Emerg Infect Dis 27:2349–2359. https://doi.org/10.3201/eid2709.210934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alves J, Alonso-Tarrés C, Rello J (2022) How to identify invasive candidemia in ICU—A narrative review. Antibiotics 11:1804. https://doi.org/10.3390/antibiotics11121804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krcmery V, Barnes AJ (2002) Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 50:243–260. https://doi.org/10.1053/jhin.2001.1151

    Article  CAS  PubMed  Google Scholar 

  17. Talapko J et al (2021) Candida albicans—the virulence factors and clinical manifestations of infection. J Fungi 7:79. https://doi.org/10.3390/jof7020079

    Article  CAS  Google Scholar 

  18. Al-Karaawi ZM et al (2002) Molecular characterization of Candida spp. isolated from the oral cavities of patients from diverse clinical settings. Oral Microbiol Immunol 17:44–49. https://doi.org/10.1046/j.0902-0055.2001.00081.x

    Article  CAS  PubMed  Google Scholar 

  19. Millsop JW, Fazel N (2016) Oral candidiasis. Clin Dermatol 34:487–494. https://doi.org/10.1016/j.clindermatol.2016.02.022

    Article  PubMed  Google Scholar 

  20. Pappas PG et al (2003) A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis 37:634–643. https://doi.org/10.1086/376906

    Article  PubMed  Google Scholar 

  21. Cleveland AA et al (2015) Declining incidence of candidemia and the shifting epidemiology of candida resistance in two US Metropolitan areas, 2008–2013: results from population-based surveillance. PLoS ONE 10:e0120452. https://doi.org/10.1371/journal.pone.0120452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blumberg HM et al (2001) Risk Factors for Candidal Bloodstream Infections in Surgical Intensive Care Unit Patients: The NEMIS Prospective Multicenter Study. Clin Infect Dis 33:177–186. https://doi.org/10.1086/321811

    Article  CAS  PubMed  Google Scholar 

  23. Pittet D, Monod M, Suter PM, Frenk E, Auckenthaler R (1994) Candida colonization and subsequent infections in critically III surgical patients. Ann Surg 220:751–758. https://doi.org/10.1097/00000658-199412000-00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128. https://doi.org/10.4161/viru.22913

    Article  PubMed  PubMed Central  Google Scholar 

  25. Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45:321–346. https://doi.org/10.1080/13693780701218689

    Article  PubMed  Google Scholar 

  26. Spellberg B, Marr KA, Filler SG (2014) Candida: what should clinicians and scientists be talking about? In: Candida and candidiasis. ASM Press, Herndon, pp 1–8. https://doi.org/10.1128/9781555817176.ch1

  27. Lewis JH, Patel HR, Zimmerman HJ (2007) The spectrum of hepatic candidiasis. Hepatology 2:479S-487S. https://doi.org/10.1002/hep.1840020415

    Article  Google Scholar 

  28. Maksymiuk AW, Thongprasert S, Hopfer R, Luna M, Fainstein V, Bodey GP (1984) Systemic candidiasis in cancer patients. Am J Med 77:20–27

    CAS  PubMed  Google Scholar 

  29. Parker JC, McCloskey JJ, Lee RS (1981) Human cerebral candidosis—a postmortem evaluation of 19 patients. Hum Pathol 12:23–28. https://doi.org/10.1016/S0046-8177(81)80238-9

    Article  PubMed  Google Scholar 

  30. Sánchez-Portocarrero J, Pérez-Cecilia E, Corral O, Romero-Vivas J, Picazo JJ (2000) The central nervous system and infection by Candida species. Diagn Microbiol Infect Dis 37:169–179. https://doi.org/10.1016/S0732-8893(00)00140-1

    Article  PubMed  Google Scholar 

  31. de Oliveira CS, Colombo AL, Francisco EC, de Lima B, Gandra RF, de Carvalho MCP, de Maia Carrilho CMD, Petinelli R, Pelison M, Helbel C, Czelusniak G, Morales HMP, Perozin JS, Pinheiro RL, Cognialli R, Breda GL, Queiroz-Telles F (2021) Nical and epidemiological aspects of Candidemia in eight medical centers in the state of Parana, Brazil: Parana Candidemia Network. Braz J Infect Dis 25:101041

    Article  PubMed  Google Scholar 

  32. Fricker-Hidalgo H et al (2001) Evaluation of Candida ID, a new chromogenic medium for fungal isolation and preliminary identification of some yeast species. J Clin Microbiol 39:1647–1649. https://doi.org/10.1128/JCM.39.4.1647-1649.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kitch TT, Jacobs MR, McGinnis MR, Appelbaum PC (1996) Ability of RapID Yeast Plus System to identify 304 clinically significant yeasts within 5 hours. J Clin Microbiol 34:1069–1071. https://doi.org/10.1128/jcm.34.5.1069-1071.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Slifkin M (2000) Tween 80 opacity test responses of various Candida species. J Clin Microbiol 38:4626–4628. https://doi.org/10.1128/JCM.38.12.4626-4628.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garbee DD, Pierce SS, Manning J (2017) Opportunistic fungal infections in critical care units. Crit Care Nurs Clin North Am 29:67–79. https://doi.org/10.1016/j.cnc.2016.09.011

    Article  PubMed  Google Scholar 

  36. de Oliveira-Santos GC et al (2018) Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol 9:1351. https://doi.org/10.3389/fmicb.2018.01351

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rivero-Menendez O et al (2019) Clinical and laboratory development of echinocandin resistance in Candida glabrata: molecular characterization. Front Microbiol 10:1585. https://doi.org/10.3389/fmicb.2019.01585

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pristov KE, Ghannoum MA (2019) Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 25:792–798. https://doi.org/10.1016/j.cmi.2019.03.028

    Article  CAS  PubMed  Google Scholar 

  39. Fenn JP et al (1994) Comparison of updated Vitek Yeast Biochemical Card and API 20C yeast identification systems. J Clin Microbiol 32:1184–1187. https://doi.org/10.1128/jcm.32.5.1184-1187.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dwivedi M, Muralidhar S, Saluja D (2020) Hibiscus sabdariffa extract inhibits adhesion, biofilm initiation and formation in Candida albicans. Indian J Microbiol 60:96–106. https://doi.org/10.1007/s12088-019-00835-9

    Article  CAS  PubMed  Google Scholar 

  41. Kim H-J, Brehm-Stecher BF (2015) Design and evaluation of peptide nucleic acid probes for specific identification of Candida albicans. J Clin Microbiol 53:511–521. https://doi.org/10.1128/JCM.02417-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Turhan O et al (2017) Evaluation of MALDI-TOF-MS for the Identification of Yeast Isolates Causing Bloodstream Infection. Clin Lab. https://doi.org/10.7754/Clin.Lab.2016.161101

    Article  PubMed  Google Scholar 

  43. Fidler G, Leiter E, Kocsube S, Biro S, Paholcsek M (2018) Validation of a simplex PCR assay enabling reliable identification of clinically relevant Candida species. BMC Infect Dis 18:393. https://doi.org/10.1186/s12879-018-3283-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berenguer J, Buck M, Witebsky F, Stock F, Pizzo PA, Walsh TJ (1993) Lysis—centrifugation blood cultures in the detection of tissue-proven invasive candidiasis disseminated versus single-organ infection. Diagn Microbiol Infect Dis 17:103–109. https://doi.org/10.1016/0732-8893(93)90020-8

    Article  CAS  PubMed  Google Scholar 

  45. Carvalho A et al (2007) Multiplex PCR identification of eight clinically relevant Candida species. Med Mycol 45:619–627. https://doi.org/10.1080/13693780701501787

    Article  CAS  PubMed  Google Scholar 

  46. Katsyv A, Schoelmerich MC, Basen M, Müller V (2021) The pyruvate:ferredoxin oxidoreductase of the thermophilic acetogen, Thermoanaerobacter kivui. FEBS Open Bio 11:1332–1342. https://doi.org/10.1002/2211-5463.13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agarwal S, Manchanda V, Verma N, Bhalla P (2011) Yeast identification in routine clinical microbiology laboratory and its clinical relevance. Indian J Med Microbiol 29:172–177. https://doi.org/10.4103/0255-0857.81794

    Article  CAS  PubMed  Google Scholar 

  48. Bayona JVM, García CS, Palop NT, Cardona CG (2020) Evaluation of a novel chromogenic medium for Candida spp. identification and comparison with CHROMagarTM Candida for the detection of Candida auris in surveillance samples. Diagn Microbiol Infect Dis 98:115168. https://doi.org/10.1016/j.diagmicrobio.2020.115168

    Article  CAS  Google Scholar 

  49. Monday LM, Acosta TP, Alangaden G (2021) T2Candida for the diagnosis and management of invasive Candida infections. J Fungi 7:178. https://doi.org/10.3390/jof7030178

    Article  Google Scholar 

  50. Himmelreich U et al (2003) Rapid Identification of Candida species by using nuclear magnetic resonance spectroscopy and a statistical classification strategy. Appl Environ Microbiol 69:4566–4574. https://doi.org/10.1128/AEM.69.8.4566-4574.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martínez-Murcia A, Navarro A, Bru G, Chowdhary A, Hagen F, Meis JF (2018) Internal validation of GPS™ MONODOSE CanAur dtec-qPCR kit following the UNE/EN ISO/IEC 17025:2005 for detection of the emerging yeast Candida auris. Mycoses 61:877–884. https://doi.org/10.1111/myc.12834

    Article  CAS  PubMed  Google Scholar 

  52. García-Salazar E et al (2022) Detection and molecular identification of eight candida species in clinical samples by simplex PCR. Microorganisms 10:374. https://doi.org/10.3390/microorganisms10020374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang J, Hung G-C, Nagamine K, Li B, Tsai S, Lo S-C (2016) Development of Candida -specific real-time PCR assays for the detection and identification of eight medically important Candida species. Microbiol Insights 9:MBI.S38517. https://doi.org/10.4137/MBI.S38517

    Article  Google Scholar 

  54. Cooper GR, Nettleton RW (1978) A spread-spectrum technique for high-capacity mobile communications. IEEE Trans Veh Technol 27:264–275. https://doi.org/10.1109/T-VT.1978.23758

    Article  Google Scholar 

  55. Schmidt CM (2004) Pancreaticoduodenectomy. Arch Surg 139:718. https://doi.org/10.1001/archsurg.139.7.718

    Article  PubMed  Google Scholar 

  56. Alam MZ et al (2014) Candida identification: a journey from conventional to molecular methods in medical mycology. World J Microbiol Biotechnol 30:1437–1451. https://doi.org/10.1007/s11274-013-1574-z

    Article  CAS  PubMed  Google Scholar 

  57. Mohanty SP, Kougianos E (2006) Biosensors: a tutorial review. IEEE Potentials 25:35–40. https://doi.org/10.1109/MP.2006.1649009

    Article  Google Scholar 

  58. Organic thin-film transistors as transducers for (bio) analytical applications. https://link.springer.com/journal/216.

  59. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60:91–100. https://doi.org/10.1042/EBC20150010

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cooper RM et al (2014) A microdevice for rapid optical detection of magnetically captured rare blood pathogens. Lab Chip 14:182–188. https://doi.org/10.1039/C3LC50935D

    Article  CAS  PubMed  Google Scholar 

  61. Sahin B, Kaya T (2019) Electrochemical amperometric biosensor applications of nanostructured metal oxides: a review. Mater Res Express 6:42003. https://doi.org/10.1088/2053-1591/aafa95

    Article  CAS  Google Scholar 

  62. Reyna-Beltrán E, Méndez CIB, Iranzo M, Mormeneo S, Luna-Arias JP (2019) The cell wall of Candida albicans: a proteomics view. In: Candida albicans. IntechOpen. https://doi.org/10.5772/intechopen.82348

  63. Sendid B, Tabouret M, Poirot JL, Mathieu D, Fruit J, Poulain D (1999) New enzyme immunoassays for sensitive detection of circulating Candida albicans Mannan and antimannan antibodies: useful combined test for diagnosis of systemic candidiasis. J Clin Microbiol 37:1510–1517. https://doi.org/10.1128/JCM.37.5.1510-1517.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Villamizar RA, Maroto A, Rius FX (2009) Improved detection of Candida albicans with carbon nanotube field-effect transistors. Sens Actuators B Chem 136:451–457. https://doi.org/10.1016/j.snb.2008.10.013

    Article  CAS  Google Scholar 

  65. Muramatsu H, Kajiwara K, Tamiya E, Karube I (1986) Piezoelectric immuno sensor for the detection of Candida albicans microbes. Anal Chim Acta 188:257–261. https://doi.org/10.1016/S0003-2670(00)86049-3

    Article  Google Scholar 

  66. Sá SR, Junior AGS, Lima-Neto RG, Andrade CAS, Oliveira MDL (2020) Lectin-based impedimetric biosensor for differentiation of pathogenic candida species. Talanta 220:121375. https://doi.org/10.1016/j.talanta.2020.121375

    Article  CAS  PubMed  Google Scholar 

  67. Kwasny D, Tehrani S, Almeida C, Schjødt I, Dimaki M, Svendsen W (2018) Direct Detection of Candida albicans with a Membrane Based Electrochemical Impedance Spectroscopy Sensor. Sensors 18:2214. https://doi.org/10.3390/s18072214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yodmongkol S et al (2016) Application of surface plasmon resonance biosensor for the detection of Candida albicans. Jpn J Appl Phys 55:02BE03. https://doi.org/10.7567/JJAP.55.02BE03

    Article  CAS  Google Scholar 

  69. Pan Y-L, Yang T-S, Chang T-C, Chang H-C (2009) Rapid identification of Candida albicans based on Raman spectral biosensing technology. In: 2009 IEEE 3rd international conference on nano/molecular medicine and engineering. IEEE, pp 120–124. https://doi.org/10.1109/NANOMED.2009.5559104.

  70. Hassan RYA, El-Attar RO, Hassan HNA, Ahmed MA, Khaled E (2017) Carbon nanotube-based electrochemical biosensors for determination of Candida albicans’s quorum sensing molecule. Sens Actuators B Chem 244:565–570. https://doi.org/10.1016/j.snb.2017.01.028

    Article  CAS  Google Scholar 

  71. Pla L et al (2021) Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of Candida auris in clinical samples. Emerg Microbes Infect 10:407–415. https://doi.org/10.1080/22221751.2020.1870411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Metzgar D et al (2013) Broad-spectrum biosensor capable of detecting and identifying diverse bacterial and candida species in blood. J Clin Microbiol 51:2670–2678. https://doi.org/10.1128/JCM.00966-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Demuyser L, Van Genechten W, Mizuno H, Colombo S, Van Dijck P (2018) Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata. Cell Microbiol 20:e12863. https://doi.org/10.1111/cmi.12863

    Article  CAS  PubMed  Google Scholar 

  74. Katrlík J, Holazová A, Medovarská I, Seilerová I, Gemeiner P, Bystrický S (2022) SPR biosensor chip based on mannan isolated from Candida dubliniensis yeasts applied in immunization effectiveness testing. Sens Actuators B Chem 350:130883. https://doi.org/10.1016/j.snb.2021.130883

    Article  CAS  Google Scholar 

  75. Akyilmaz E, Dinçkaya E (2005) An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol. Biosens Bioelectron 20:1263–1269. https://doi.org/10.1016/j.bios.2004.04.010

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y et al (2021) Development and application of a multiple cross displacement amplification combined with nanoparticle-based lateral flow biosensor assay to detect Candida tropicalis. Front Microbiol. https://doi.org/10.3389/fmicb.2021.681488

    Article  PubMed  PubMed Central  Google Scholar 

  77. Akyilmaz E, Guvenc C, Koylu H (2020) A novel mıcrobıal bıosensor system based on C. tropicalis yeast cells for selectıve determınatıon of L-Ascorbıc acid. Bioelectrochemistry 132:107420. https://doi.org/10.1016/j.bioelechem.2019.107420

    Article  CAS  PubMed  Google Scholar 

  78. Dedić J, Kesić A, Hodžić Z, Ibrišimović M, Hadžigrahić N, Mehmedinović NI (2020) Early detection of fungal pathogens in patients with immunodeficiency involving a novel biosensor technology. Int J Dev Res

  79. Cai Z, Luck LA, Punihaole D, Madura JD, Asher SA (2016) Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition. Chem Sci 7:4557–4562. https://doi.org/10.1039/C6SC00682E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Asghar W, Sher M, Khan NS, Vyas JM, Demirci U (2019) Microfluidic Chip for Detection of Fungal Infections. ACS Omega 4:7474–7481. https://doi.org/10.1021/acsomega.9b00499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang Y et al (2016) Antimicrobial blue light inactivation of gram-negative pathogens in biofilms. In vitro and in vivo studies. J Infect Dis 213:1380–1387. https://doi.org/10.1093/infdis/jiw070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Freire F, Ferraresi C, Jorge AOC, Hamblin MR (2016) Photodynamic therapy of oral Candida infection in a mouse model. J Photochem Photobiol B 159:161–168. https://doi.org/10.1016/j.jphotobiol.2016.03.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sukhanova A et al (2002) Highly stable fluorescent nanocrystals as a novel class of labels for immunohistochemical analysis of paraffin-embedded tissue sections. Lab Invest 82:1259–1261. https://doi.org/10.1097/01.LAB.0000027837.13582.E8

    Article  PubMed  Google Scholar 

  84. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635. https://doi.org/10.1038/90228

    Article  CAS  PubMed  Google Scholar 

  85. Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41. https://doi.org/10.1007/BF03214964

    Article  Google Scholar 

  86. DeVisser A et al (2011) RETRACTED: Differential impact of diabetes and hypertension in the brain: Adverse effects in grey matter. Neurobiol Dis 44:161–173. https://doi.org/10.1016/j.nbd.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  87. Chatterjee S, Wen J, Chen A (2013) Electrochemical determination of methylglyoxal as a biomarker in humanplasma. Biosens Bioelectron 42:349–354. https://doi.org/10.1016/j.bios.2012.10.091

    Article  CAS  PubMed  Google Scholar 

  88. Zamora-Gálvez A, Morales-Narváez E, Mayorga-Martinez CC, Merkoçi A (2017) Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Appl Mater Today 9:387–401. https://doi.org/10.1016/j.apmt.2017.09.006

    Article  Google Scholar 

  89. Singh KR, Nayak V, Sarkar T, Singh RP (2020) Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv 10:27194–27214. https://doi.org/10.1039/D0RA04736H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chauhan N, Chawla S, Pundir CS, Jain U (2017) An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode. Biosens Bioelectron 89:377–383. https://doi.org/10.1016/j.bios.2016.06.047

    Article  CAS  PubMed  Google Scholar 

  91. Costa MP, Andrade CAS, Montenegro RA, Melo FL, Oliveira MDL (2014) Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J Colloid Interface Sci 433:141–148. https://doi.org/10.1016/j.jcis.2014.07.014

    Article  CAS  PubMed  Google Scholar 

  92. Deusenbery C, Wang Y, Shukla A (2021) Recent innovations in bacterial infection detection and treatment. ACS Infect Dis 7:695–720. https://doi.org/10.1021/acsinfecdis.0c00890

    Article  CAS  PubMed  Google Scholar 

  93. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A-724A. https://doi.org/10.1021/ac00258a001

    Article  CAS  Google Scholar 

  94. Sheybani R, Shukla A (2017) Highly sensitive label-free dual sensor array for rapid detection of wound bacteria. Biosens Bioelectron 92:425–433. https://doi.org/10.1016/j.bios.2016.10.084

    Article  CAS  PubMed  Google Scholar 

  95. Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011. https://doi.org/10.1021/ja031723w

    Article  CAS  PubMed  Google Scholar 

  96. Huang G-W, Xiao H-M, Fu S-Y (2015) Wearable electronics of silver-nanowire/poly(dimethylsiloxane) nanocomposite for smart clothing. Sci Rep 5:13971. https://doi.org/10.1038/srep13971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6:709–713. https://doi.org/10.1038/nphoton.2012.266

    Article  CAS  Google Scholar 

  98. Ambhorkar P et al (2018) Nanowire-based biosensors: from growth to applications. Micromachines (Basel) 9:679. https://doi.org/10.3390/mi9120679

    Article  PubMed  Google Scholar 

  99. Kim W et al (2018) A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosens Bioelectron 111:59–65. https://doi.org/10.1016/j.bios.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  100. Nooranian S, Mohammadinejad A, Mohajeri T, Aleyaghoob G, Kazemi-Oskuee R (2022) Biosensors based on aptamer-conjugated gold nanoparticles: a review. Biotechnol Appl Biochem 69:1517–1534. https://doi.org/10.1002/bab.2224

    Article  CAS  PubMed  Google Scholar 

  101. Fei J, Dou W, Zhao G (2015) A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles. Microchim Acta 182:2267–2275. https://doi.org/10.1007/s00604-015-1573-x

    Article  CAS  Google Scholar 

  102. Razmi N, Hasanzadeh M, Willander M, Nur O (2020) Recent progress on the electrochemical biosensing of Escherichia coli O157:H7: material and methods overview. Biosensors (Basel) 10:54. https://doi.org/10.3390/bios10050054

    Article  CAS  PubMed  Google Scholar 

  103. Gaba S, Jain U (2024) Advanced biosensors for nanomaterial-based detection of transforming growth factor alpha and beta, a class of major polypeptide regulators. Int J Biol Macromol 257:128622. https://doi.org/10.1016/j.ijbiomac.2023.128622

    Article  CAS  PubMed  Google Scholar 

  104. Gaba S, Chauhan N, Chandra R, Jain U (2024) Future advances of artificial biosensor technology in biomedical applications. Talanta Open. https://doi.org/10.1016/j.talo.2024.100301

    Article  Google Scholar 

  105. Balayan S, Chauhan N, Chandra R, Jain U (2022) Molecular imprinting based electrochemical biosensor for identification of serum amyloid A (SAA), a neonatal sepsis biomarker. Int J Biol Macromol 195:589–597. https://doi.org/10.1016/j.ijbiomac.2021.12.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Shodh Grant (UPES/R&D/SHODH/202314) supported by UPES R&D, Dehradun to Nidhi Chauhan and Riya Verma.

Author information

Authors and Affiliations

Authors

Contributions

Riya Verma: Writing original draft, Review—writing and editing; Smriti Gaba: Writing original draft, Review—writing and editing, Nidhi Chauhan: Supervision, Review—writing and editing; Ramesh Chandra: Supervision, Review—writing and editing, Utkarsh Jain: Supervision, Conceptualization, Review—writing and editing.

Corresponding author

Correspondence to Utkarsh Jain.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors Riya Verma and Smriti Gaba are shared co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Gaba, S., Chauhan, N. et al. Biodetection Strategies for Selective Identification of Candidiasis. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01288-5

Keywords

Navigation