Skip to main content

Advertisement

Log in

Hibiscus sabdariffa Extract Inhibits Adhesion, Biofilm Initiation and Formation in Candida albicans

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Microbial biofilms act as reservoirs for pathogenic sessile microbes which reside inside the three dimensional matrix of the biofilm, and are thus protected against anti-microbial drugs. Most of the anti-microbial drugs fail to completely abolish the biofilm associated infections. In the present study, we provide evidence of Hibiscus sabdariffa (Hs) extract having possible anti-microbial activity, with emphasis on Candida albicans biofilm. The Hs extract was shown to be effective against C. albicans pre-formed biofilm at 3.125 mg/ml and was able to inhibit the hyphae initiation and adherence of cells. Furthermore, Hs extract was able to reduce the C. albicans load in C. elegans by effectively killing the Candida cells thereby reducing the viable colony count and effectively increasing the lifespan of worms. The percentage of viable hatched progeny of worms exposed to Hs extract (both at conc. 1.5 mg/ml and 6.25 mg/ml), was also comparable to that of the control untreated eggs. The Hs extract was also found to be significantly effective against fluconazole resistant C. albicans isolated from patients. Thus, we, for the first time, propose Hs extract as a prospective drug candidate and substitute for eradicating pre-formed biofilm and inhibiting the growth of C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CFU:

Colony-forming units

DMSO:

Dimethyl sulfoxide

Hs:

Hibiscus sabdariffa

MDR:

Multi drug resistant

MIC:

Minimum inhibitory concentration

NP:

Natural products

XTT:

2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide

References

  1. Chandra J, Mukherjee PK (2015) Candida biofilms: development, architecture, and resistance. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MB-0020-2015

    Article  PubMed  Google Scholar 

  2. Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M (2017) Candida species biofilms’ antifungal resistance. J Fungi 3:8. https://doi.org/10.3390/jof3010008

    Article  CAS  Google Scholar 

  3. Dongari-Bagtzoglou A (2008) Pathogenesis of mucosal biofilm infections: challenges and progress. Expert Rev Anti Infect Ther 6:201–208. https://doi.org/10.1586/14787210.6.2.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

    Article  CAS  PubMed  Google Scholar 

  5. Elisha IL, Botha FS, McGaw LJ, Eloff JN (2017) The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement Altern Med 17:133. https://doi.org/10.1186/s12906-017-1645-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vashist H, Jindal A (2012) Antimicrobial activities of medicinal plants—review. Int J Res Pharm Biomed Sci 3:222–230

    Google Scholar 

  7. Silva N, Fernandes Júnior A (2010) Biological properties of medicinal plants: a review of their antimicrobial activity. J Venom Anim Toxins Incl Trop Dis 16:402–413. https://doi.org/10.1590/S1678-91992010000300006

    Article  Google Scholar 

  8. Kusumoto IT, Nakabayashi T, Kida H, Miyashiro H, Hattori M, Namba T, Shimotohno K (1995) Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phyther Res 9:180–184. https://doi.org/10.1002/ptr.2650090305

    Article  CAS  Google Scholar 

  9. Hassan STS, Berchová K, Šudomová M (2016) Antimicrobial, antiparasitic and anticancer properties of Hibiscus sabdariffa (L.) and its phytochemicals: in vitro and in vivo studies. Ceska Slov Farm 65:10–14

    CAS  PubMed  Google Scholar 

  10. Panaitescu M, Lengyel E (2017) Monitoring the antibacterial activity of Hibiscus sabdariffa extracts. Manag Sustain Dev 9:31–34. https://doi.org/10.1515/msd-2017-0011

    Article  Google Scholar 

  11. Afolabi OC, Ogunsola FT, Coker AO (2008) Susceptibility of cariogenic Streptococcus mutans to extracts of Garcinia kola, Hibiscus sabdariffa, and Solanum americanum. West Afr J Med 27:230–233

    CAS  PubMed  Google Scholar 

  12. Olaleye TM (2007) Cytotoxicity and antibacterial activity of methanolic extract of Hibiscus sabdariffa. J Med Plants Res 1:009–013

    Google Scholar 

  13. Wayne P (2006) Performance standards for antimicrobial disk susceptibility tests; approved standard, 9th edn. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  14. Borrás-Linares I, Fernández-Arroyo S, Arráez-Roman D, Palmeros-Suárez PA, Del Val-Díaz R, Andrade-Gonzáles I, Fernandez-Gutierrez A, Gomez-Leyva JF, Segura-Carretero A (2015) Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind Crops Prod 69:385–394. https://doi.org/10.1016/j.indcrop.2015.02.053

    Article  CAS  Google Scholar 

  15. Rex JH, Alexander BD, Andes D, Arthington-Skaggs B, Brown SD, Chaturvedi V, Ghannoum MA, Espinel-Ingroff A, Knapp CC, Ostrosky-Zeichner L, Pfaller MA, Sheehan DJ, Walsh TJ (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard, 3rd edn. Clinical and Laboratory Standards Institute, Wayne, pp 1–25. https://doi.org/10.4319/lo.1981.26.3.0590

    Book  Google Scholar 

  16. Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, Ramage G, Lopez-Ribot JL (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3:1494–1500. https://doi.org/10.1038/nprot.2008.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandra J, Mukherjee PK, Ghannoum MA (2008) In vitro growth and analysis of Candida biofilms. Nat Protoc 3:1909–1924. https://doi.org/10.1038/nprot.2008.192

    Article  CAS  PubMed  Google Scholar 

  18. Fazly A, Jain C, Dehner AC, Issi L, Lilly EA, Ali A, Cao H, Fidel PL Jr, Kaufman PD (2013) Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis. Proc Natl Acad Sci 110:13594–13599. https://doi.org/10.1073/pnas.1305982110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3:e18. https://doi.org/10.1371/journal.ppat.0030018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riaz G, Chopra R (2018) A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed Pharmacother 102:575–586. https://doi.org/10.1016/j.biopha.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  21. Abdallah EM (2016) Antibacterial activity of Hibiscus sabdariffa L. calyces against hospital isolates of multidrug resistant Acinetobacter baumannii. J Acute Dis 5:512–516. https://doi.org/10.1016/j.joad.2016.08.024

    Article  Google Scholar 

  22. Abdallah EM (2016) Antibacterial efficiency of the Sudanese Roselle (Hibiscus sabdariffa L.), a famous beverage from Sudanese folk medicine. J Intercult Ethnopharmacol 5:186–190. https://doi.org/10.5455/jice.20160320022623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramirez-Rodrigues MM, Plaza ML, Azeredo A, Balaban MO, Marshall MR (2011) Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa. J Food Sci 76:429–435. https://doi.org/10.1111/j.1750-3841.2011.02091.x

    Article  CAS  Google Scholar 

  24. Ramírez-Rodrigues MM, Balaban MO, Marshall MR, Rouseff RL (2011) Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried. J Food Sci 76:212–217. https://doi.org/10.1111/j.1750-3841.2010.01989.x

    Article  CAS  Google Scholar 

  25. Fullerton M, Khatiwada J, Johnson JU, Davis S, Williams LL (2011) Determination of antimicrobial activity of sorrel (Hibiscus sabdariffa) on Esherichia coli O157:H7 isolated from food, veterinary, and clinical samples. J Med Food 14:950–956. https://doi.org/10.1089/jmf.2010.0200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Biswas S, Van Dijck P, Datta A (2007) Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71:348–376. https://doi.org/10.1128/MMBR.00009-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ernst JF (2000) Transcription factors in Candida albicans—environmental control of morphogenesis. Microbiology 146:1763–1774. https://doi.org/10.1099/00221287-146-8-1763

    Article  CAS  PubMed  Google Scholar 

  28. Rukayadi Y, Shim J-S, Hwang J-K (2008) Screening of Thai medicinal plants for anticandidal activity. Mycoses 51:308–312. https://doi.org/10.1111/j.1439-0507.2008.01497.x

    Article  PubMed  Google Scholar 

  29. Alshami I, Alharbi AE (2014) Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections. Asian Pac J Trop Biomed 4:104–108. https://doi.org/10.1016/S2221-1691(14)60217-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37:50–59. https://doi.org/10.1002/jat.3357

    Article  CAS  PubMed  Google Scholar 

  31. Gauwerky K, Borelli C, Korting HC (2009) Targeting virulence: a new paradigm for antifungals. Drug Discov Today 14:214–222. https://doi.org/10.1016/j.drudis.2008.11.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the DBT-BIF bioinformatics facility of ACBR for all the logistic support. Strains used in this study were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

Funding

This work was supported by the scheme of Post Doctoral Fellowship for Women funded by University Grants Commission, India (Grant No. PDFWM-2014-15-GE-DEL-22743) to MD and SAPII by UGC and DST-Purse Grant-II to DS funded by Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Dwivedi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

The study protocol was as per the Guidelines and Standards for Research. The study was approved by the Ethics Committee of ACBR (ACBR/IHEC/DS-02/09-18), University of Delhi and VMMC and Safdarjung Hospital (IEC/VMMC/SJH/Project/November/2018-1104).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, M., Muralidhar, S. & Saluja, D. Hibiscus sabdariffa Extract Inhibits Adhesion, Biofilm Initiation and Formation in Candida albicans. Indian J Microbiol 60, 96–106 (2020). https://doi.org/10.1007/s12088-019-00835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00835-9

Keywords

Navigation