Skip to main content

Advertisement

Log in

Detection and Molecular Characterization of Porcine Teschoviruses in India: Identification of New Genotypes

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Porcine Teschoviruses (PTVs) are ubiquitous enteric viral pathogens that infect pigs and wild boars worldwide. PTVs have been responsible for causing the severe clinical disease (Teschen disease) to asymptomatic infections. However, to date, limited information is available on large-scale epidemiological data and molecular characterization of PTVs in several countries. In this study, we report epidemiological data on PTVs based on screening of 534 porcine fecal samples from different states of India and a RT-PCR based detection of PTVs shows a percent positivity of 8.24% (44/534). The PTV prevalence varied among different regions of the country with the highest detection rates observed in the state of Karnataka (38.1%). Phylogenetic analysis based on VP1 gene reveals the presence of PTV genotype 6 and 13 along with some unassigned novel genotypes which did not cluster with any of the established PTV genotypes (PTV 1–PTV 13). Indian PTV 6 strains are genetically closest to the Spanish strains (85.7–94.4%) whereas PTV 13 and novel genotype strains were found to be more similar to the Chinese strains (88.1–99.1%). Using recombination detection software, no Indian PTVs found to be recombinant on VP1 gene and selection pressure analysis revealed the purifying selection in the several sites of the VP1 gene of PTVs. The Bayesian analysis of Indian PTVs shows 1.16 × 10–4 substitution/site/year as the mean evolutionary rate. Further, isolation of the novel PTV strains from India and more detailed investigation much needed to know the evolutionary history of PTV strains circulating in porcine populations in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are available from the authors upon reasonable request; sequences are available via GenBank.

References

  1. Knowles N, Buckley L, Pereira H (1979) Classification of porcine enteroviruses by antigenic analysis and cytopathic effects in tissue culture: description of 3 new serotypes. Arch Virol 62:201–208. https://doi.org/10.1007/BF01317552

    Article  CAS  PubMed  Google Scholar 

  2. Zell R, Dauber M, Krumbholz A, Henke A, Birch-Hirschfeld E, Stelzner A, Prager D, Wurm R (2001) Porcine teschoviruses comprise at least eleven distinct serotypes: molecular and evolutionary aspects. J Virol 75:1620–1631. https://doi.org/10.1128/jvi.75.4.1620-1631.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaku Y, Sarai A, Murakami Y (2001) Genetic reclassification of porcine enteroviruses. J Gen Virol 82:417–424. https://doi.org/10.1099/0022-1317-82-2-417

    Article  CAS  PubMed  Google Scholar 

  4. Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, Lindberg AM, Pallansch MA, Palmenberg AC, Reuter G, Simmonds P, Skern T, Stanway G, Yamashita T, Ictv Report C (2017) ICTV virus taxonomy profile: Picornaviridae. J Gen Virol 98:2421–2422. https://doi.org/10.1099/jgv.0.000911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trefny L (1930) Hromadna onemocnemi vepru na Tesinsku. Zverolek Obz 23:235–236

    Google Scholar 

  6. Harding J, Done J, Kershaw G (1957) A transmissible polio-encephalomyelitis of pigs (Talfan disease). Vet Rec 69

  7. Yamada M, Kaku Y, Nakamura K, Yoshii M, Yamamoto Y, Miyazaki A, Tsunemitsu H, Narita M (2007) Immunohistochemical detection of porcine teschovirus antigen in the formalin-fixed paraffin-embedded specimens from pigs experimentally infected with Porcine teschovirus. J Vet Med A 54:571–574. https://doi.org/10.1111/j.1439-0442.2007.00974.x

    Article  CAS  Google Scholar 

  8. Yang T, Yu X, Luo B, Yan M, Li R, Qu T, Ren X (2018) Epidemiology and molecular characterization of Porcine teschovirus in Hunan, China. Transbound Emerg Dis 65:480–490. https://doi.org/10.1111/tbed.12728

    Article  CAS  PubMed  Google Scholar 

  9. Horak S, Killoran K, Larson KL (2016) Porcine Teschovirus. Swine Health Information Center and Center for Food Security and Public Health, Ames

    Google Scholar 

  10. Ray PK, Desingu P, Anoopraj R, Singh R, Saikumar G (2020) Identification and genotypic characterization of porcine teschovirus from selected pig populations in India. Trop Anim Health Prod 52:1161–1166. https://doi.org/10.1007/s11250-019-02114-7

    Article  PubMed  Google Scholar 

  11. Qiu Z, Wang Z, Zhang B, Zhang J, Cui S (2013) The prevalence of porcine teschovirus in the pig population in northeast of China. J Virol Methods 193:209–214. https://doi.org/10.1016/j.jviromet.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  12. Oba M, Naoi Y, Ito M, Masuda T, Katayama Y, Sakaguchi S, Omatsu T, Furuya T, Yamasato H, Sunaga F (2018) Metagenomic identification and sequence analysis of a Teschovirus A-related virus in porcine feces in Japan, 2014–2016. Infect Genet Evol 66:210–216. https://doi.org/10.1016/j.meegid.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  13. Buitrago D, Cano-Gómez C, Agüero M, Fernandez-Pacheco P, Gómez-Tejedor C, Jiménez-Clavero MÁ (2010) A survey of porcine picornaviruses and adenoviruses in fecal samples in Spain. J Vet Diagn Invest 22:763–766. https://doi.org/10.1177/1040638710022005

    Article  PubMed  Google Scholar 

  14. Sozzi E, Barbieri I, Lavazza A, Lelli D, Moreno A, Canelli E, Bugnetti M, Cordioli P (2010) Molecular characterization and phylogenetic analysis of VP1 of porcine enteric picornaviruses isolates in Italy. Transbound Emerg Dis 57:434–442. https://doi.org/10.1111/j.1865-1682.2010.01170.x

    Article  CAS  PubMed  Google Scholar 

  15. Racaniello VR (2013) Picornaviridae: the viruses and their replication. In: Knipe DM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strauss SE (eds) Fields virology. Wolters Klewer/ Lippincott Williams & Wilkins, Philadelphia, pp 453–489

    Google Scholar 

  16. Simmonds P (2006) Recombination and selection in the evolution of picornaviruses and other mammalian positive-stranded RNA viruses. J Virol 80:11124–11140. https://doi.org/10.1128/jvi.01076-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang B, Tian Z-J, Gong D-Q, Li D-Y, Wang Y, Chen J-Z, An T-Q, Peng J-M, Tong G-Z (2010) Isolation of serotype 2 porcine teschovirus in China: evidence of natural recombination. Vet Microbiol 146:138–143. https://doi.org/10.1016/j.vetmic.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  18. John J, Das T, Sethi M, Kattoor J, Tomar N, Saikumar G (2022) Epidemiological study of porcine teschovirus infection in pigs at Bareilly, Uttar Pradesh, India. Biol Rhythm Res 53:50–57. https://doi.org/10.1080/09291016.2019.1627645

    Article  CAS  Google Scholar 

  19. Sawant PM, Atre N, Kulkarni A, Gopalkrishna V (2020) Detection and molecular characterization of porcine enterovirus G15 and teschovirus from India. Pathogens Dis 78:ftaa039. https://doi.org/10.1093/femspd/ftaa039

    Article  CAS  Google Scholar 

  20. Bhat S, Kattoor JJ, Malik YS, Sircar S, Deol P, Rawat V, Rakholia R, Ghosh S, Vlasova AN, Nadia T (2018) Species C rotaviruses in children with diarrhea in India, 2010–2013: a potentially neglected cause of acute gastroenteritis. Pathogens 7:23. https://doi.org/10.3390/pathogens7010023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palmquist JM, Munir S, Taku A, Kapur V, Goyal SM (2002) Detection of porcine teschovirus and enterovirus type II by reverse transcription–polymerase chain reaction. J Vet Diagn Invest 14:476–480. https://doi.org/10.1177/104063870201400605

    Article  PubMed  Google Scholar 

  22. Jiang X, Huang P, Zhong W, Farkas T, Cubitt D, Matson D (1999) Design and evaluation of a primer pair that detects both Norwalk-and Sapporo-like caliciviruses by RT-PCR. J Virol Methods 83:145–154. https://doi.org/10.1016/S0166-0934(99)00114-7

    Article  CAS  PubMed  Google Scholar 

  23. Finkbeiner SR, Holtz LR, Jiang Y, Rajendran P, Franz CJ, Zhao G, Kang G, Wang D (2009) Human stool contains a previously unrecognized diversity of novel astroviruses. Virol J 6:1–5. https://doi.org/10.1186/1743-422X-6-161

    Article  CAS  Google Scholar 

  24. Malik Y, Sharma A, Sharma K, Sircar S, Dhama K (2017) RNA polymerase gene based RT-PCR assay with primers update for genus specific detection of picobirnaviruses. J Anim Plant Sci 27:582–588

    CAS  Google Scholar 

  25. La Rosa G, Muscillo M, Di Grazia A, Fontana S, Iaconelli M, Tollis M (2006) Validation of RT-PCR assays for molecular characterization of porcine teschoviruses and enteroviruses. J Vet Med B 53:257–265. https://doi.org/10.1111/j.1439-0450.2006.00955.x

    Article  Google Scholar 

  26. VinodhKumar O, Sircar S, Pruthvishree B, Nirupama K, Singh B, Sinha D, Rupner R, Karthikeyan A, Karthikeyan R, Dubal Z (2020) Cross-sectional study on rotavirus A (RVA) infection and assessment of risk factors in pre-and post-weaning piglets in India. Trop Anim Health Prod 52:445–452. https://doi.org/10.1007/s11250-019-01999-8

    Article  CAS  PubMed  Google Scholar 

  27. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  30. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. https://doi.org/10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pond SLK, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679. https://doi.org/10.1093/bioinformatics/bti079

    Article  CAS  PubMed  Google Scholar 

  32. Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222. https://doi.org/10.1093/molbev/msi105

    Article  CAS  PubMed  Google Scholar 

  33. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764. https://doi.org/10.1371/journal.pgen.1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada M, Kozakura R, Nakamura K, Yamamoto Y, Yoshii M, Kaku Y, Miyazaki A, Tsunemitsu H, Narita M (2009) Pathological changes in pigs experimentally infected with porcine teschovirus. J Comp Pathol 141:223–228. https://doi.org/10.1016/j.jcpa.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  35. Yamada M, Miyazaki A, Yamamoto Y, Nakamura K, Ito M, Tsunemitsu H, Narita M (2014) Experimental teschovirus encephalomyelitis in gnotobiotic pigs. J Comp Pathol 150:276–286. https://doi.org/10.1016/j.jcpa.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  36. Sun H, Gao H, Chen M, Lan D, Hua X, Wang C, Yuan C, Yang Z, Cui L (2015) New serotypes of porcine teschovirus identified in Shanghai, China. Arch Virol 160:831–835. https://doi.org/10.1007/s00705-014-2326-6

    Article  CAS  PubMed  Google Scholar 

  37. Hicks AL, Duffy S (2011) Genus-specific substitution rate variability among picornaviruses. J Virol 85:7942–7947. https://doi.org/10.1128/jvi.02535-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cano-Gómez C, Palero F, Buitrago MD, García-Casado MA, Fernández-Pinero J, Fernández-Pacheco P, Agüero M, Gómez-Tejedor C, Jiménez-Clavero MÁ (2011) Analyzing the genetic diversity of teschoviruses in Spanish pig populations using complete VP1 sequences. Infect Genet Evol 11:2144–2150. https://doi.org/10.1016/j.meegid.2011.09.014

    Article  PubMed  Google Scholar 

  39. Villanova F, Cui S, Ai X, Leal É (2016) Analysis of full-length genomes of porcine teschovirus (PTV) and the effect of purifying selection on phylogenetic trees. Arch Virol 161:1199–1208. https://doi.org/10.1007/s00705-015-2744-0

    Article  CAS  PubMed  Google Scholar 

  40. Purdy MA, Khudyakov YE (2010) Evolutionary history and population dynamics of hepatitis E virus. PLoS One 5:e14376. https://doi.org/10.1371/journal.pone.0014376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zehender G, Bernini F, Delogu M, Cusi MG, Rezza G, Galli M, Ciccozzi M (2009) Bayesian skyline plot inference of the Toscana virus epidemic: a decline in the effective number of infections over the last 30 years. Infect Genet Evol 9:562–566. https://doi.org/10.1016/j.meegid.2009.02.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the ICAR-Education Division for the financial assistance and staff of the state animal husbandry departments for their constant help with the sampling process and/or data collection. We are thankful to Indian Veterinary Research Institute for facilitating the research project.

Funding

The present study was funded by ICAR-National Fellow project, Indian Council of Agricultural Research, Ministry of Agriculture and Farmers Welfare, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

YSM and SG conceptualized and designed the experiments; SB screened the samples; SBJJK and SS, VOR, and PT performed the experiments and designed the figures. SB, YSM written the manuscript; SG edited the manuscript; YSM critically analyzed and finalized the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yashpal Singh Malik.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S., Kattoor, J.J., Sircar, S. et al. Detection and Molecular Characterization of Porcine Teschoviruses in India: Identification of New Genotypes. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-023-01173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-023-01173-7

Keywords

Navigation