Skip to main content
Log in

Alkaline Thermo- and Oxidant-Stable Protease from Bacillus pumilus Strain TNP93: Laundry Detergent Formulations

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The study aims to produce a detergent-compatible and alkaline thermophilic protease from a Bacillus strain and to investigate its usability as a detergent bio-additive. The protease-producing bacterium was identified as Bacillus pumilus strain TNP93 according to the 16S rRNA sequence. The bacterium optimally synthesized the protease at 40 °C and pH 10 in 40 h. The raw protease displayed its optimum activity at pH 10 and 60 °C and its stability between pH 6–13 and 30–100 °C for 24 h. The molecular mass of the proteolytic band was estimated to be about 85 kDa. The protease was not inhibited by any of the metal ions used (Ba2+, Ca2+, Co2+, Cu2+, Mg2+, Mn2+, Zn2+). 97 and 90% of its original activity with 5 mM PMSF and EDTA remained. The activity was measured as 84, 124, and 95%, respectively, in the presence of 1% concentrations of Tween 20, Tween 80, and Triton X-100. In addition, all of its activity was preserved when the enzyme was exposed to 5% H2O2. The end products of casein were detected as tyrosine, aspartic acid, glycine, and cysteine by thin-layer chromatography. Considering the wash performance analysis, the mix of 1% commercial detergent and enzyme almost removed all of the protein-based stains (blood and egg yolk albumin). These remarkable findings indicate that the alkaline, thermo-, and oxidant-stable TNP93 protease is a valuable candidate for usage as a biological additive in various laundry detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

All data belonging to this study are included in this article.

References

  1. Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413. https://doi.org/10.1021/acs.chemrev.5b00472

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Kokare C (2023) Microbial enzymes of use in industry. In: Brahmachari G (ed) Biotechnology of microbial enzymes, 2 edn. Academic Press, Cambridge, pp 405–444. https://doi.org/10.1016/B978-0-443-19059-9.00021-9

  3. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635. https://doi.org/10.1128/mmbr.62.3.597-635.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dorra G, Ines K, Imen BS, Laurent C, Sana A, Olfa T, Pascal C, Thierry J, Ferid L (2018) Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Int J Biol Macromol 111:342–351. https://doi.org/10.1016/j.ijbiomac.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  5. Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F (2021) Protease-a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett 151:307–323. https://doi.org/10.1007/s10562-020-03316-7

    Article  CAS  Google Scholar 

  6. Abdel-Naby MA, Ahmed SA, Wehaidy HR, El-Mahdy SA (2017) Catalytic, kinetic and thermodynamic properties of stabilized Bacillus stearothermophilus alkaline protease. Int J Biol Macromol 96:265–271. https://doi.org/10.1016/j.ijbiomac.2016.11.094

    Article  CAS  PubMed  Google Scholar 

  7. Mumecha TK, Beyan SM, Prabhu SV, Zewde FT (2021) Alkaline protease production using eggshells and membrane-based substrates: process modeling, optimization, and evaluation of detergent potency. Eng Appl Sci Res; 48(2):171–180. https://doi.org/10.14456/easr.2021.19

  8. Mienda BS, Yahya A, Galadima IA, Shamsir MS (2014) An overview of microbial proteases for industrial applications. Res J Pharm Biol Chem Sci 5:388–396

    Google Scholar 

  9. Rahem FZ, Badis A, Zenati B, Mechri S, Hadjidj R, Rekik H, Eddouaouda K, Annane R, Jaouadi B (2021) Characterization of a novel serine alkaline protease from Bacillus atrophaeus NIJ as a thermophilic hydrocarbonoclastic strain and its application in laundry detergent formulations. ALJEST 7(1).

  10. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32. https://doi.org/10.1007/s00253-002-0975-y

    Article  CAS  PubMed  Google Scholar 

  11. Mhamdi S, Bkhairia I, Nasri R, Mechichi T, Nasri M, Kamoun AS (2017) Evaluation of the biotechnological potential of a novel purified protease BS1 from Bacillus safensis S406 on the chitin extraction and detergent formulation. Int J Biol Macromol 104:739–747. https://doi.org/10.1016/j.ijbiomac.2017.06.062

    Article  CAS  PubMed  Google Scholar 

  12. Bajpai D, Tyagi VK (2007) Laundry detergents: an overview. J Oleo Sci 56:327–340. https://doi.org/10.5650/jos.56.327

    Article  CAS  PubMed  Google Scholar 

  13. Gemechu G, Masi C, Tafesse M, Kebede G (2020) A review on the bacterial alkaline proteases. J Xidian Univ; 14(11):632–4. https://doi.org/10.37896/jxu14.11/022

  14. Zhao K, Liu H, Song W, Wu J, Gao C, Guo L, Chen X (2022) Combinatorial mutagenesis of Bacillus amyloliquefaciens for efficient production of protease. Synth Syst Biotechnol. https://doi.org/10.1007/s43393-022-00130-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qadar SAU, Shireen E, Iqbal S, Anwar A (2009) Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3. Indian J Biotechnol 8(3):286–290.

  16. Jayakumar R, Jayashree S, Annapurna B, Seshadri S (2012) Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl Biochem Biotechn 168:1849–1866. https://doi.org/10.1007/s12010-012-9902-6

    Article  CAS  Google Scholar 

  17. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2011) Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes. Springer, New York

  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moradian F, Khajeh K, Naderi-Manesh H, Sadeghizadeh M (2009) Isolation, purification and characterization of a surfactants-, laundry detergents- and organic solvents-resistant alkaline protease from Bacillus sp. HR-08. Appl Biochem Biotechnol 159:33–45. https://doi.org/10.1007/s12010-008-8402-1

    Article  CAS  PubMed  Google Scholar 

  20. Özçelik B, Aytar P, Gedikli S, Yardımcı E, Çalışkan F, Çabuk A (2014) Production of an alkaline protease using Bacillus pumilus D3 without inactivation by SDS, its characterization and purification. J Enzyme Inhib Med Chem 29:388–396. https://doi.org/10.3109/14756366.2013.788503

    Article  CAS  PubMed  Google Scholar 

  21. Takami H, Akiba T, Horikoshi K (1989) Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101. Appl Microbiol Biotechnol 30:120–124. https://doi.org/10.1007/BF00263997

    Article  CAS  Google Scholar 

  22. Hadjidj R, Badis A, Mechri S, Eddouaouda K, Khelouia L, Annane R, El Hattab M, Jaouadi B (2018) Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int J Biol Macromol 114:1033–1048. https://doi.org/10.1016/j.ijbiomac.2018.03.167

    Article  CAS  PubMed  Google Scholar 

  23. Sengupta S, Saha R, Bhattacharya D, Chakrabarti K, Mukhopadhyay M (2018) Characterization of thermoadaptive serine metalloprotease and application in waste management. Bioresour Technol Rep 2:53–61. https://doi.org/10.1016/j.biteb.2018.04.006

    Article  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  25. Shaikh IK, Dixit PP, Shaikh TM (2018) Purification and characterization of alkaline soda-bleach stable protease from Bacillus sp. APP-07 isolated from Laundromat soil. J Genet Eng Biotechnol 16:273–279. https://doi.org/10.1016/j.jgeb.2018.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  27. García-Carreño FL, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69. https://doi.org/10.1006/abio.1993.1457

    Article  PubMed  Google Scholar 

  28. Hammami A, Hamdi M, Abdelhedi O, Jridi M, Nasri M, Bayoudh A (2017) Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae: characterization and potential applications in chitin extraction and as a detergent additive. Int J Biol Macromol 96:272–281. https://doi.org/10.1016/j.ijbiomac.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  29. David A, Chauhan PS, Kumar A, Angural S, Kumar D, Puri N, Gupta N (2018) Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives. Int J Biol Macromol 108:1176–1184. https://doi.org/10.1016/j.ijbiomac.2017.09.037

    Article  CAS  PubMed  Google Scholar 

  30. Patil U, Mokashe N, Chaudhari A (2016) Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: purification and characterization. Prep Biochem Biotechnol 46:56–64. https://doi.org/10.1080/10826068.2014.979205

    Article  CAS  PubMed  Google Scholar 

  31. Bhatt HB, Singh SP (2020) Cloning, expression, and structural elucidation of a biotechnologically potential alkaline serine protease from a newly isolated haloalkaliphilic Bacillus lehensis JO-26. Front Microbiol 11:941. https://doi.org/10.3389/fmicb.2020.00941

    Article  PubMed  PubMed Central  Google Scholar 

  32. Genckal H, Tari C (2006) Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb Technol 39:703–710. https://doi.org/10.1016/j.enzmictec.2005.12.004

    Article  CAS  Google Scholar 

  33. Doddapaneni KK, Tatineni R, Vellanki RN, Rachcha S, Anabrolu N, Narakuti V, Mangamoori LN (2009) Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiol Res 164:383–390. https://doi.org/10.1016/j.micres.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  34. Lam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, Jamaluddin H, Chong CS (2018) Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech 8:1–9. https://doi.org/10.1007/s13205-018-1133-2

  35. Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S (2008) Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90:1291–1305. https://doi.org/10.1016/j.biochi.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Cortezi M, Cilli EM, Contiero J (2008) Bacillus amyloliquefaciens: a new keratinolytic feather-degrading bacteria. Curr Trends Biotechnol Pharm 2:170–177

    CAS  Google Scholar 

  37. Guleria S, Walia A, Chauhan A, Shirkot CK (2018) Production and eco friendly application of alkaline protease from Bacillus amyloliquifaciens sp1. Indian J Biotechnol 17:448–458

    CAS  Google Scholar 

  38. Mhina CF, Jung HY, Kim JK (2020) Recovery of antioxidant and antimicrobial peptides through the reutilization of Nile perch wastewater by biodegradation using two Bacillus species. Chemosphere 253:126728. https://doi.org/10.1016/j.chemosphere.2020.126728

    Article  CAS  PubMed  Google Scholar 

  39. Rekik H, Jaouadi NZ, Gargouri F, Bejar W, Frikha F, Jmal N, Bejar S, Jaouadi B (2019) Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int J Biol Macromol 121:1227–1239. https://doi.org/10.1016/j.ijbiomac.2018.10.139

    Article  CAS  PubMed  Google Scholar 

  40. Lakshmi BKM, Kumar DM, Hemalatha KPJ (2018) Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. J Genet Eng Biotechnol 16:295–304. https://doi.org/10.1016/j.jgeb.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sen S, Dasu VV, Dutta K, Mandal B (2011) Characterization of a novel surfactant and organic solvent stable high-alkaline protease from new Bacillus pseudofirmus SVB1. Res J Microbiol 6:769–783. https://doi.org/10.3923/jm.2011.769.783

    Article  CAS  Google Scholar 

  42. Baweja M, Tiwari R, Singh PK, Nain L, Shukla P (2016) An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Front Microbiol 7:1195. https://doi.org/10.3389/fmicb.2016.01195

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jain D, Pancha I, Mishra SK, Shrivastav A, Mishra S (2012) Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: a potential additive for laundry detergents. Bioresour Technol 115:228–236. https://doi.org/10.1016/j.biortech.2011.10.081

    Article  CAS  PubMed  Google Scholar 

  44. Daoud L, Hmani H, Ben Ali M, Jlidi M, Ben Ali M (2018) An original halo-alkaline protease from Bacillus halodurans strain US193: biochemical characterization and potential use as bio-additive in detergents. J Polym Environ 26:23–32. https://doi.org/10.1007/s10924-016-0916-y

    Article  CAS  Google Scholar 

  45. Haddar A, Agrebi R, Bougatef A, Hmidet N, Sellami-Kamoun A, Nasri M (2009) Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresour Technol 100:3366–3373. https://doi.org/10.1016/j.biortech.2009.01.061

    Article  CAS  PubMed  Google Scholar 

  46. Asha B, Palaniswamy M (2018) Characterization of crude and partially purified thermo active and thermo stable alkaline protease produced by Bacillus cereus FT1. J Pharm Sci Res 10:180–187

    CAS  Google Scholar 

  47. Kumar CG (2002) Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Lett Appl Microbiol 34:13–17. https://doi.org/10.1046/j.1472-765x.2002.01044.x

    Article  CAS  PubMed  Google Scholar 

  48. Salem RB, Abbassi MS, Cayol JL, Bourouis A, Mahrouki S, Fardeau ML, Belhadj O (2016) Thermophilic Bacillus licheniformis RBS 5 isolated from hot Tunisian spring co-producing alkaline and thermostable α-amylase and protease enzymes. J Microbiol Biotechnol Food Sci; 5(6):557–562. https://doi.org/10.15414/jmbfs.2016.5.6.557-562

  49. Patel Y, Gupte A, Gupte S (2018) Production, partial purification, characterization and detergent compatibility of alkaline protease from soil isolate Bacillus cereus AG1. Int J Curr Microbiol Appl Sci; 7(8):587–600. https://doi.org/10.20546/ijcmas.2018.708.064

  50. Adinarayana K, Ellaiah P, Prasad DS (2003) Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS PharmSciTech 4:440–448. https://doi.org/10.1208/pt040456

    Article  PubMed Central  Google Scholar 

  51. Elhoul MB, Jaouadi NZ, Rekik H, Bejar W, Touioui SB, Hmidi M, Badis A, Bejar S, Jaouadi B (2015) A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650. Int J Biol Macromol 79:871–882. https://doi.org/10.1016/j.ijbiomac.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  52. Singh SK, Singh SK, Tripathi VR, Garg SK (2012) Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochem 47:1479–1487. https://doi.org/10.1016/j.procbio.2012.05.021

    Article  CAS  Google Scholar 

  53. Mechri S, Berrouina MBE, Benmrad MO, Jaouadi NZ, Rekik H, Moujehed E, Chebbi A, Sayadi S, Chamkha M, Bejar S, Jaouadi B (2017) Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest. Int J Biol Macromol 94:221–232. https://doi.org/10.1016/j.ijbiomac.2016.09.112

    Article  CAS  PubMed  Google Scholar 

  54. Beg QK, Gupta R (2003) Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb Technol 32:294–304. https://doi.org/10.1016/S0141-0229(02)00293-4

    Article  CAS  Google Scholar 

  55. Ibrahim KS, Muniyandi J, Pandian SK (2011) Purification and characterization of manganese-dependent alkaline serine protease from Bacillus pumilus TMS55. J Microbiol Biotechnol 21:20–27. https://doi.org/10.4014/jmb.1009.09001

    Article  CAS  PubMed  Google Scholar 

  56. Bhange K, Chaturvedi V, Bhatt R (2016) Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnol Rep 10:94–104. https://doi.org/10.1016/j.btre.2016.03.007

    Article  Google Scholar 

  57. Mothe T, Sultanpuram VR (2016) Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech 6:1–10. https://doi.org/10.1007/s13205-016-0377-y

    Article  Google Scholar 

  58. Karl-Heinz M (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334. https://doi.org/10.1016/j.copbio.2004.06.005

    Article  CAS  Google Scholar 

  59. Rai SK, Mukherjee AK (2011) Optimization of production of an oxidant and detergent-stable alkaline β-keratinase from Brevibacillus sp strain AS-S10-II: application of enzyme in laundry detergent formulations and in leather industry. Biochem Eng J 54:47–56. https://doi.org/10.1016/j.bej.2011.01.007

    Article  CAS  Google Scholar 

  60. Ghorbel B, Sellami-Kamoun A, Nasri M (2003) Stability studies of protease from Bacillus cereus BG1. Enzyme Microb Technol 32:513–518. https://doi.org/10.1016/S0141-0229(03)00004-8

    Article  CAS  Google Scholar 

  61. Jaouadi B, Ellouz-Chaabouni S, Ali MB, Messaoud EB, Naili B, Dhouib A, Bejar S (2009) Excellent laundry detergent compatibility and high dehairing ability of the Bacillus pumilus CBS alkaline proteinase (SAPB). Biotechnol Bioprocess Eng 14:503. https://doi.org/10.1007/s12257-008-0244-8

    Article  CAS  Google Scholar 

  62. Ibrahim AS, Al-Salamah AA, El-Badawi YB, El-Tayeb MA, Antranikian G (2015) Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization. Extremophiles 19:961–971. https://doi.org/10.1007/s00792-015-0771-0

    Article  CAS  PubMed  Google Scholar 

  63. Emran MA, Ismail SA, Hashem AM (2020) Production of detergent stable thermophilic alkaline protease by Bacillus licheniformis ALW1. Biocatal Agric Biotechnol 26:101631. https://doi.org/10.1016/j.bcab.2020.101631

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Burhan Arıkan from Çukurova University for his kind support during the isolation of the bacterium.

Funding

The Scientific Research Project Unit of Cukurova University supported this work (Grant number: FBA-2018–10883).

Author information

Authors and Affiliations

Authors

Contributions

The authors planned the research, performed all the assays, analyzed the results, wrote, and edited the article.

Corresponding author

Correspondence to Nihan Arabacı.

Ethics declarations

Declarations

Ethics approval There are no studies with humans or animals in this article.

Supplementary Information

No supplementary files.

Conflict of interest

There is no conflict of interest between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabacı, N., Karaytuğ, T. Alkaline Thermo- and Oxidant-Stable Protease from Bacillus pumilus Strain TNP93: Laundry Detergent Formulations. Indian J Microbiol 63, 575–587 (2023). https://doi.org/10.1007/s12088-023-01115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01115-3

Keywords

Navigation