Skip to main content
Log in

Species distribution modelling through Bayesian hierarchical approach

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Usually in Ecology, the availability and quality of the data is not as good as we would like. For some species, the typical environmental study focuses on presence/absence data, and particularly with small animals as amphibians and reptiles, the number of presences can be rather small. The aim of this study is to develop a spatial model for studying animal data with a low level of presences; we specify a Gaussian Markov Random Field for modelling the spatial component and evaluate the inclusion of environmental covariates. To assess the model suitability, we use Watanabe-Akaike information criteria (WAIC) and the conditional predictive ordinate (CPO). We apply this framework to model each species of amphibian and reptiles present in the Las Tablas de Daimiel National Park (Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acreman M, Almagro J, Alvarez J, Bouraoui F, Bradford R, Bromley J, Croke B, Crooks S, Cruces J, Dolz J, Dunbar M, Estrela T, Fernandez-Carrasco P, Fornes J, Gustard G, Haverkamp R, De La Hera A, Hernández-Mora N, Llamas R, Martinez CL, Papamasorakis J, Ragab R, Sánchez M, Vardavas I, Webb T (2000) Groundwater and river resources programme on a European scale (GRAPES). Technical report to the European Union ENV4–CT95-0186. Institute of Hydrology, Wallingford

    Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: B. N. Petrov and F. Csaki (eds) Proceedings of the Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp 267–281. Reprinted in Breakthroughs in Statistics, ed. S. Kotz, 610–624. New York: Springer (1992)

  • Banerjee S, Carlin B, Gelfand A (2004) Hierarchical modeling and analysis for spatial data. CRC, London

    Google Scholar 

  • Bishop CA, Gendron AD (1998) Reptiles and amphibians: shy and sensitive vertebrates of the Great Lakes basin and St. Lawrence river. Environ Monit Assess 53:225–244

    Article  CAS  Google Scholar 

  • Blangiardo M, Cameletti M (2015) Spatial and Spatio-temporal Bayesian models with R-INLA. Wiley

  • Blangiardo M, Cameletti M, Baio G, Rue H (2013) Spatial and spatio-temporal models with R-INLA. Spat Spatiotemporal Epidemiol 7:39–55

    Article  Google Scholar 

  • Brost BM, Hooten MB, Hanks EM, Small RJ (2015) Animal movement constraints improve resource selection inference in the presence of telemetry error. Ecology 96:2590–2597

    Article  Google Scholar 

  • Burger J, Snodgrass J (1998) Heavy metals in bullfrog (Rana catesbeiana) tadpoles: effects of depuration before analysis. Environ Toxicol Chem 17:2203–2209

    Article  CAS  Google Scholar 

  • Busby JR (1991) BIOCLIM: a bioclimatic analysis and predictive system. In: Margules C, Austin M (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Canberra, pp 64–68

    Google Scholar 

  • Chakraborty A, Gelfand AE, Wilson AM, Latimer AM, Silander JA (2010) Modeling large scale species abundance with latent spatial processes. Ann Appl Stat 4(3):1403–1429

    Article  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8(1):2–14

    Article  Google Scholar 

  • Corn SP (2005) Climate change and amphibians. Anim Biodivers Conserv 28:59–67

    Google Scholar 

  • Coronado R, Del Portillo F, Sáez-Royuela R (1974) Tablas de Daimiel National Park Guide. ICONA, Madrid

    Google Scholar 

  • Cosandey-Godin A, Teixeira Krainski E, Worm B, Mills Flemming J (2015) Applying Bayesian spatiotemporal models to fisheries bycatch in the Canadian Arctic. Can J Fish Aquat Sci 72:1–12

    Article  Google Scholar 

  • Cots F, David Tàbara J, Werners S, McEvoy D (2007) Climate change and water adaptive management through transboundary cooperation. The case of the Guadiana river basin. Paper presented to the first International Conference on Adaptive and Integrative Water Management (CAIWA), Basel, Switzerland, November 2007

  • Crase B, Liedloff AC, Wintle BA (2012) A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35(10):879–888

    Article  Google Scholar 

  • Cressie N, Calder CA, Clark JS, Hoef JMV, Wikle CK (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol Appl 19:553–5701

    Article  Google Scholar 

  • Cummins CP (2003) UV-B radiation, climate change and frogs—the importance of phenology. Ann Zool Fenn 40:61–67

    Google Scholar 

  • de Rivera ÓRD, López-Quílez A (2017) Development and comparison of species distribution models for forest inventories. ISPRS International Journal of Geo-Information 6(6):176

    Article  Google Scholar 

  • Diggle P, Ribeiro PJ (2007) Model-based Geostatistics. Springer-Verlag, New York

    Google Scholar 

  • Dorazio RM (2014) Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Glob Ecol Biogeogr 23(12):1472–1484

    Article  Google Scholar 

  • Dorit, R L, Walker W F, Barnes R D (1991) Zoology. Saunders College Publishing. ISBN 978-0-03-030504-7

  • Elith J, Burgman MA (2002) Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia. In: Scott JM, Heglund PJ, Morrison ML, Raphael MG, Wall WA, Samson FB (eds) Predicting Species Occurrences: Issues of Accuracy and Scale. Island Press, Covelo, pp 303–314

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Fellers GM, Mcconnell LL, Pratt D, Datta S (2004) Pesticides in mountain yellow legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA. Environ Toxicol Chem 23:2170–2177

    Article  CAS  Google Scholar 

  • Fithian W, Elith J, Hastie T, Keith DA (2015) Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol 6(4):424–438

    Article  Google Scholar 

  • Geisser S, Eddy W (1979) A predictive approach to model selection. J Am Stat Assoc 74:153–160

    Article  Google Scholar 

  • Gelfand AE, Silander JA, Wu SJ, Latimer AM, Rebelo PLAG, Holder M (2006) Explaining species distribution patterns through hierarchical modeling. Bayesian Anal 1(1):41–92

    Article  Google Scholar 

  • Gelfand AE, Diggle P, Fuentes M, Guttorp P (eds) (2010) Handbook of spatial statistics. Chapman & Hall, Boca-Raton

    Google Scholar 

  • Gelman A, Shalizi C (2013) Philosophy and the practice of Bayesian statistics (with discussion). Br J Math Stat Psychol 66:8–80

    Article  Google Scholar 

  • Gendron AD, Marcogliese DJ, Barbeau S, Christin MS, Brousseau P, Ruby S, Cyr D, Fournier M (2006) Exposure of leopard frogs to a pesticide mixture affects life history characteristics of the lungworm Rhabdias ranae. Oecologia 135:469–476

    Article  Google Scholar 

  • Gibbons JW, Stangel PW (eds) (1999) Conserving amphibians and reptiles in the new millenium. Proceedings of the Partners in Amphibian and Reptile Conservation (PARC). Conference; 2–4 June 1999; Atlanta (GA).Aiken (SC): Savannah River Ecology Laboratory. Herp Outreach Publication #2

  • Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, Leiden Y, Poppy S, Winne CT (2000) The global decline of reptiles, Déjà vu amphibians. BioScience 50(8):653–666

    Article  Google Scholar 

  • Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102(477):359–378

    Article  CAS  Google Scholar 

  • Golding N, Purse BV (2016) Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods Ecol Evol 7(5):598–608

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  • Haining R, Law J, Maheswaran R, Pearson T, Brindley P (2007) Bayesian modelling of environmental risk: a small area ecological study of coronary heart disease mortality in relation to modelled outdoor nitrogen oxide levels. Stoch Env Res Risk A 21(5):501–509

    Article  Google Scholar 

  • Hatch AC, Blaustein AR (2003) Combined effects of UV-B radiation and nitrate fertilizer on larval amphibians. Ecol Appl 13:1083–1093

    Article  Google Scholar 

  • Hefley TJ, Hooten MB (2016) Hierarchical species distribution models. Current Landscape Ecology Reports 1(2):87–97

    Article  Google Scholar 

  • Henry PFP (2000) Aspects of amphibian anatomy and physiology: Society of Environmental Toxicology and Chemistry, 71–110

  • Hijman R, Graham C (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Chang Biol 12(12):2272–2281

    Article  Google Scholar 

  • Hijmans RJ, Elith J (2015) Species distribution modelling with R. http://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf, The R foundation for statistical computing

  • Hooten MB, Wikle CK (2008) A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian collared-dove. Environ Ecol Stat 15(1):59–70

    Article  Google Scholar 

  • Hooten MB, Wikle CK, Dorazio RM, Royle JA (2007) Hierarchical spatiotemporal matrix models for characterizing invasions. Biometrics 63(2):558–567

    Article  Google Scholar 

  • Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310

    Article  CAS  Google Scholar 

  • Hui FK (2016) Boral–Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol Evol 7(5):744–750

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • IGME (Instituto Geológico y Minero de España) (2017) http://www.igme.es/zonas_humedas/daimiel/medio_fisico/clima.htm. Date visited: 01/03/2017

  • Illian JB, Martino S, Sørbye SH, Gallego-Fernández JB, Zunzunegui M, Esquivias MP, Travis JMJ (2013) Fitting complex ecological point process models with integrated nested Laplace approximation. Methods Ecol Evol 4:305–315. https://doi.org/10.1111/2041-210x.12017

    Article  Google Scholar 

  • Johnson DS, Hooten MB, Kuhn CE (2013) Estimating animal resource selection from telemetry data using point process models. J Anim Ecol 82(6):1155–1164

    Article  Google Scholar 

  • Kery M, Schaub M (2011) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, Burlington

    Google Scholar 

  • Latimer AM, Wu SS, Gelfand AE, Silander JA (2006) Building statistical models to analyze species distributions. Ecol Appl 16(1):33–50

    Article  Google Scholar 

  • Leathwick JR, Rowe D, Richardson J, Elith J, Hastie T (2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshw Biol 50:2034–2052

    Article  Google Scholar 

  • Lecours V (2017) On the use of maps and models in conservation and resource management (warning: results may vary). Front Mar Sci 4:288

    Article  Google Scholar 

  • Li L, Qiu S, Zhang B, Feng CX (2015) Approximating cross-validatory predictive evaluation in Bayesian latent variable model with integrated IS and WAIC. Stat Comput 26:881–897. https://doi.org/10.1007/s11222-015-9577-2

    Article  Google Scholar 

  • Lindgren F, Rue H (2013) Bayesian spatial and spatio-temporal modelling with R-INLA. J Stat Softw

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach [with discussion]. J R Stat Soc B 73(4):423–498

    Article  Google Scholar 

  • Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of Californias endemic flora. PLoS One 3(6):e2502

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling inferring patterns and dynamics of species occurrence. Academic Press

  • Meehan TD, Michel NL, Rue H (2017) Estimating animal abundance with N-mixture models using the R-INLA package for R arXiv preprint arXiv:1705.01581

  • Midgley GF, Thuiller W (2007) Potential vulnerability of Namaqualand plant diversity to anthropogenic climate change. J Arid Environ 70:615–628

    Article  Google Scholar 

  • Muñoz F, Pennino MG, Conesa D, López-Quílez A, Bellido JM (2013) Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch Environ Res Risk Assess 27:1171–1180

    Article  Google Scholar 

  • Navarro V, García B, Sánchez D, Asensio L (2011) An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain. J Hydrol 401:53–64

    Article  Google Scholar 

  • Osborne PE, Foody GM, Suárez-Seoane S (2007) Non-stationarity and local approaches to modelling the distributions of wildlife. Divers Distrib 13(3):313–323

    Article  Google Scholar 

  • Ovaskainen O, Soininen J (2011) Making more out of sparse data: hierarchical modeling of species communities. Ecology 92(2):289–295

    Article  Google Scholar 

  • Pettit LI (1990) The conditional predictive ordinate for the normal distribution. J R Stat Soc Ser B 52(1):175–184

    Google Scholar 

  • Piha H, Luoto M, Merilä J (2007) Amphibian occurrence is influenced by current and historic landscape characteristics. Ecol Appl 17(8):2298–2309

    Article  Google Scholar 

  • Pressey RL, Cabeza M, Watts EM, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592

    Article  Google Scholar 

  • Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol 6(10):1126–1136. https://doi.org/10.1111/2041-210X.12397

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Roos M, Held L (2011) Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Anal 6(2):259–278

    Article  Google Scholar 

  • Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115

    Article  Google Scholar 

  • Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press

  • Royle JA, Kery M, Gautier R, Schmidt H (2007) Hierarchical spatial models of abundance and occurrence from imperfect survey data. Ecol Monogr 77:465–481

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J R Stat Soc Ser B 71:319–392

    Article  Google Scholar 

  • Russell JC, Hanks EM, Haran M (2016) Dynamic models of animal movement with spatial point process interactions. J Agric Biol Environ Stat 21(1):22–40

    Article  Google Scholar 

  • Sánchez-Ramos D, Sánchez-Emeterio G, Florín Beltrán M (2015) Changes in water quality of treated sewage effluents by their receiving environments in Tablas de Daimiel National Park, Spain. Environ Sci Pollut Res 23:6082–6090. https://doi.org/10.1007/s11356-015-4660-y

    Article  Google Scholar 

  • Simpson D, Lindgren F, Rue H (2011) Fast approximate inference with INLA: the past, the present and the future. Technical report at arxiv.org

  • Sower SA, Reed KL, Babbitt KJ (2000) Limb malformations and abnormal sex hormone concentrations in frogs. Environ Health Perspect 108:1085–1090

    Article  CAS  Google Scholar 

  • Sparling DW, Linder G, Bishop CA (eds) (2000) Ecotoxicology of amphibians and reptiles. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 71–111

    Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64(4):583–616

    Article  Google Scholar 

  • Stuart S, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fishman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  Google Scholar 

  • Underwood AJ (1981) Techniques of analysis of variance in marine biology and ecology. Oceanogr Mar Biol Annu Rev 19:513–605

    Google Scholar 

  • van der Linde A (2005) DIC in variable selection. Statistica Neerlandica 59(1):45–56

    Article  Google Scholar 

  • Vehtari A, Lampinen J (2002) Bayesian model assessment and comparison using cross validation predictive densities. Neural Comput 14:2439–2468

    Article  Google Scholar 

  • Wade PR (2000) Bayesian methods in conservation biology. Conserv Biol 14(5):1308–1316. https://doi.org/10.1046/j.1523-1739.2000.99415.x

    Article  Google Scholar 

  • Warton DI, Blanchet FG, O’Hara RB, Ovaskainen O, Taskinen S, Walker SC, Hui FK (2015) So many variables: joint modeling in community ecology. Trends Ecol Evol 30(12):766–779

    Article  Google Scholar 

  • Watanabe S (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res 11:3571–3594

    Google Scholar 

  • Wikle CK (2003) Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84(6):1382–1394

    Article  Google Scholar 

  • Wintle BA, McCarthy MA, Volinsky CT, Kavanagh RP (2003) The use of Bayesian model averaging to better represent uncertainty in ecological models. Conserv Biol 17(6):1579–1590. https://doi.org/10.1111/j.1523-1739.2003.00614.x

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Yustres A, Navarro V, Asensio L, Candel M, García B (2013) Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis. Hydrogeol J 21(5):1129–1146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Rodríguez de Rivera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Rivera, O.R., Blangiardo, M., López-Quílez, A. et al. Species distribution modelling through Bayesian hierarchical approach. Theor Ecol 12, 49–59 (2019). https://doi.org/10.1007/s12080-018-0387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-018-0387-y

Keywords

Navigation