Skip to main content
Log in

An investigation on electronic and magnetic properties of Cr substituted MoS2 monolayer and multilayers—hybrid functional calculations

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

With help of ab-initio density functional theory calculation, DFT+U, and hybrid functional HSE06, we revisit the layer-dependent electronic structure and magnetic properties of pristine and 3d transition metal Cr doped MoS2 monolayer and multi-layers. Our results show that the dopant Cr atoms prefer to stay at nearest neighbor distances. In the multilayers, they prefer to remain in the outermost surface layers. Matching with the experimental band gap, the optimized U parameter we report is 4 eV. The band gap of the Cr-doped monolayer is indirect, confirming the experimental observation from photoluminescence experiments. The HSE06 calculation for Cr doped monolayer shows that the band gap of doped Cr MoS2 monolayer is indirect and no magnetism is observed. From the DFT studies, the band gap for the multilayers is indirect, and doping with Cr does not induce magnetic moments in MoS2 layers. The band gap is observed to decrease with the multilayer thickness. The strain induced by substitutional Cr doping at the Mo site transforms the band gap in monolayer MoS2 from direct to indirect; the defect states are produced within the band gap region close to the conduction band minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9.
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y and Dubonos S V et al. 2004 Electric field effect in atomically thin carbon films. Science 306: 666–669

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V and Morozov S V et al. 2005 Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102: 10451–10453

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Castro Neto A H, Guinea F, Peres N M R R, Novoselov K S and Geim A K 2009 The electronic properties of graphene. Rev. Mod. Phys. 81: 109–162

    Article  ADS  CAS  Google Scholar 

  4. Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438: 201–204

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I and Grigorieva I V et al. 2005 Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: 197–200

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jin C, Lin F, Suenaga K and Iijima S 2009 Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102: 195505

    Article  ADS  PubMed  Google Scholar 

  7. Splendiani A, Sun L, Zhang Y, Li T, Kim J and Chim C Y et al. 2010 Emerging photoluminescence in monolayer MoS2. Nano Lett. 10: 1271–1275

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Li T and Galli G 2007 Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111: 16192–16196

    Article  CAS  Google Scholar 

  9. Yang Z and Ni J 2010 Modulation of electronic properties of hexagonal boron nitride bilayers by an electric field: a first principles study. J. Appl. Phys. 107: 104304

    Article  ADS  Google Scholar 

  10. Samadi M, Sarikhani N, Zirak M, Zhang H, Zhang H L and Moshfegh A Z 2018 Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications, and future perspectives. Nanoscale Horiz. 3: 90–204

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Li X and Zhu H 2015 Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1: 33–44

    Article  ADS  Google Scholar 

  12. Zhao X, Dai X, Xia C, Wang T and Peng Y 2015 Electronic and magnetic properties of Mn-doped monolayer WS2. Solid State Commun. 215–216: 1–4

    ADS  Google Scholar 

  13. Mattheiss L F 1973 Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8: 3719–3740

    Article  ADS  CAS  Google Scholar 

  14. Coehoorn R, Haas C, Dijkstra J, Flipse C D, de Groot R A and Wold A 1987 Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35: 6195–6202

    Article  ADS  CAS  Google Scholar 

  15. Ding Y, Wang Y, Ni J, Shi L, Shi S and Tang W 2011 First-principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B 406: 2254–2260

    Article  ADS  CAS  Google Scholar 

  16. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 2D transition metal dichalcogenides. Nat. Rev. Mater. 2: 1–15

    Article  Google Scholar 

  17. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7: 699–712

    Article  ADS  CAS  Google Scholar 

  18. Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J and Khan U et al. 2011 Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331: 568–571

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ayari A, Cobas E, Ogundadegbe O and Fuhrer M S 2007 Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101: 014507

    Article  ADS  Google Scholar 

  20. Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105: 2–5

    Article  Google Scholar 

  21. Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors. Nat. Nanotech. 6: 147–150

    Article  ADS  CAS  Google Scholar 

  22. Murray R B and Yoffe A D 1972 The band structures of some transition metal dichalcogenides: band structures of the titanium dichalcogenides. J. Phys. C 5: 3038–3046

    Article  ADS  CAS  Google Scholar 

  23. Wei L, Jun-fang C, Qinyu H and Teng W 2010 Electronic and elastic properties of MoS2. Physica B 405: 2498–2502

    Article  ADS  Google Scholar 

  24. Lebègue S and Eriksson O 2009 Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79: 4–7

    Article  Google Scholar 

  25. Ellis J K, Lucero M J and Scuseria G E 2011 The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99: 261908

    Article  ADS  Google Scholar 

  26. Lee H, Zhang Q, Zhang W, Chang T, Lin T and Chang D et al. 2012 Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24: 2320–2325

    Article  CAS  PubMed  Google Scholar 

  27. Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J and Steele G A 2012 Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12: 187–3192

    Article  Google Scholar 

  28. Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A and Lee D H et al. 2007 Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6: 770–775

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Li X, Wang X, Zhang Lee S and Dai H 2008 Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319: 1229–1232

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Han M Y, Zyilmaz B O, Zhang Y and Kim P 2007 Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98: 206805

    Article  ADS  PubMed  Google Scholar 

  31. Jiao L, Zhang L, Wang X, Diankov G and Dai H 2009 Narrow graphene nanoribbons from carbon nanotubes. Nature 458: 877–880

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Singh N, Jabbour G and Schwingenschlögl U 2012 Optical and photocatalytic properties of two-dimensional MoS2. Eur. Phys. J. B 85: 392

    Article  ADS  Google Scholar 

  33. Ataca C and Ciraci S 2011 Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C 115: 13303–13311

    Article  CAS  Google Scholar 

  34. Li H, Yin Z, He Q, Li H, Huang X and Lu G et al. 2012 Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8: 63–67

    Article  CAS  PubMed  Google Scholar 

  35. Kim Y, Huang J L and Lieber C M 1991 Characterization of nanometer scale wear and oxidation of transition metal dichalcogenide lubricants by atomic force microscopy. Appl. Phys. Lett. 59: 3404–3406

    Article  ADS  CAS  Google Scholar 

  36. Hu K H, Hu X G and Sun X J 2010 Morphological effect of MoS2 nanoparticles on catalytic oxidation and vacuum lubrication. Appl. Surf. Sci. 256: 2517–2523

    Article  ADS  CAS  Google Scholar 

  37. Fortin E and Sears W M 1982 Photovoltaic effect and optical absorption in MoS2. J. Phys. Chem. Solids 43: 881–884

    Article  ADS  CAS  Google Scholar 

  38. Wang P P, Sun H, Ji Y, Li W and Wang X 2014 Three-dimensional assembly of single-layered MoS2. Adv. Mater. 26: 964–969

    Article  CAS  PubMed  Google Scholar 

  39. Wu H C, Coileáin C Ó, Abid M, Mauit O, Syrlybekov A and Khalid A et al. 2015 Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions. Sci. Rep. 5: 15984

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dolui K, Narayan A, Rungger I and Sanvito S 2014 Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Phys. Rev. B 90: 1–5

    Article  Google Scholar 

  41. Zhang H, Ye M, Wang Y, Quhe R, Pan Y and Guo Y et al. 2016 Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions. Phys. Chem. Chem. Phys. 18: 16367–16376

    Article  CAS  PubMed  Google Scholar 

  42. Rotjanapittayakul W, Pijitrojana W, Archer T, Sanvito S and Prasongkit J 2018 Spin injection and magnetoresistance in MoS2-based tunnel junctions using Fe3Si Heusler alloy electrodes. Sci. Rep. 8: 1–8

    Article  CAS  Google Scholar 

  43. Qian X, Liu J, Fu L and Li J 2014 Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346: 1344–1347

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84: 1–5

    Article  Google Scholar 

  45. Xiao D, Bin Liu G, Feng W, Xu X and Yao W 2012 Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108: 1–5

    Article  Google Scholar 

  46. Ganatra R and Zhang Q 2014 Few-layer MoS2: a promising layered semiconductor. ACS Nano 8: 4074–4099

    Article  CAS  PubMed  Google Scholar 

  47. Lin M W, Kravchenko I I, Fowlkes J, Li X, Puretzky A A and Rouleau C M et al. 2016 Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology 27: 165203

    Article  ADS  PubMed  Google Scholar 

  48. Scalise E, Houssa M, Pourtois G, Afanas’ev V and Stesmans A 2012 Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5: 43–48

    Article  CAS  Google Scholar 

  49. Dong L, Namburu R R, O’Regan T P, Dubey M and Dongare A M 2014 Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J. Mater. Sci. 49: 6762–6771

    Article  ADS  CAS  Google Scholar 

  50. Zheng H, Yang B, Wang D, Han R, Du X and Yan Y 2014 Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 104: 1–6

    Article  Google Scholar 

  51. Tao P, Guo H, Yang T and Zhang Z 2014 Strain-induced magnetism in MoS2 monolayer with defects. J. Appl. Phys. 115: 054305

    Article  ADS  Google Scholar 

  52. Chacko L, Swetha A K, Anjana R, Jayaraj M K and Aneesh P M 2016 Wasp-waisted magnetism in hydrothermally grown MoS2 nanoflakes. Mater. Res. Express 3: 1–9

    Article  Google Scholar 

  53. Zhang J, Soon J M, Loh K P, Yin J, Ding J and Sullivian M B et al. 2007 Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7: 2370–2376

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Andriotis A N and Menon M 2014 Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B 90: 1–7

    Article  Google Scholar 

  55. Mishra R, Zhou W, Pennycook S J, Pantelides S T and Idrobo J C 2013 Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys. Rev. B 88: 1–5

    Article  Google Scholar 

  56. Ramasubramaniam A and Naveh D 2013 Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys. Rev. B 87: 1–7

    Article  Google Scholar 

  57. Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlögl U 2013 Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 87: 2–5

    Article  Google Scholar 

  58. Wang Y, Tseng L, Murmu P P, Bao N, Kennedy J and Ionesc M et al. 2017 Defects engineering induced room temperature ferromagnetism in transition metal doped MoS2. Mater. Des. 121: 77–84

    Article  CAS  Google Scholar 

  59. Fang M and Yang E-H 2023 Advances in two-dimensional magnetic semiconductors via substitutional doping of transition metal dichalcogenides. Materials 16: 3701

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lewis D J, Tedstone A A, Zhong X L, Lewis E A, Rooney A and Savjani N et al. 2015 Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 27: 1367–1374

    Article  CAS  Google Scholar 

  61. Zhang R, Du Y, Han G and Gao X 2019 Ferromagnetism and microwave absorption properties of Cr-doped MoS2 nanosheets. J. Mater. Sci. 54: 552–559

    Article  ADS  CAS  Google Scholar 

  62. He J, Wu K, Sa R, Li Q and Wei Y 2010 Magnetic properties of nonmetal atoms absorbed MoS2 monolayers. Appl. Phys. Lett. 96: 82504

    Article  Google Scholar 

  63. Huang C, Jin Y, Wang W, Tang L, Song C and Xiu F 2017 Manganese and chromium doping in atomically thin MoS2. J. Semicond. 38: 033004

    Article  ADS  Google Scholar 

  64. Kresse G and Furthmüller J 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6: 15–50

    Article  CAS  Google Scholar 

  65. Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54: 11169–11186

    Article  ADS  CAS  Google Scholar 

  66. Monkhorst H J and Pack J D 1976 Special points for Brillouin-zone integrations. Phys. Rev. B 13: 5188–5192

    Article  ADS  MathSciNet  Google Scholar 

  67. Perdew J P and Zunger A 1981 Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23: 5048–5079

    Article  ADS  CAS  Google Scholar 

  68. Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59: 1758–1775

    Article  ADS  CAS  Google Scholar 

  69. Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple. Phys. Rev. Lett. 77: 3865–3868

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132: 154104

    Article  ADS  PubMed  Google Scholar 

  71. Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57: 1505–1509

    Article  ADS  CAS  Google Scholar 

  72. Anisimov V I, Zaanen J and Andersen O K 1991 Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44: 943–954

    Article  ADS  CAS  Google Scholar 

  73. Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125: 224106

    Article  ADS  PubMed  Google Scholar 

  74. Wu M, Yao X, Hao Y, Dong H, Cheng Y and Liu H et al. 2018 Electronic structures, magnetic properties and band alignments of 3d transition metal atoms doped monolayer MoS2. Phys. Lett. A 382: 111–115

    Article  ADS  CAS  Google Scholar 

  75. Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13: 3626–3630

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Gurpreet Kaur and Dr. Kashinath T. Chavan for useful discussions and technical help, and ARS would like to thank the IGCAR for the research fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharat Chandra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, A.R., Chandra, S. An investigation on electronic and magnetic properties of Cr substituted MoS2 monolayer and multilayers—hybrid functional calculations. Sādhanā 49, 103 (2024). https://doi.org/10.1007/s12046-024-02471-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-024-02471-6

Keywords

Navigation