Skip to main content

Advertisement

Log in

Ionic wind review-2020: advancement and application in thermal management

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Heat dissipation in electronic devices is highly essential to maintain the temperature within safe limits and overcome the component failure. Ionic wind has emerged as one of the potential cooling technologies in thermal management of electronic devices over conventional cooling methods. The ionic wind cooling has drawn considerable attention for both external and internal flows owing to the favorable characteristics such as silent operation, quick response, minimum power and compactness. In the recent years, new actuating strategies have been developed by various researchers for enhancement of heat dissipation. The motive of the present review is categorized into three. The first is to provide an insight in recent advancement of ionic wind from the point of physics and electric field; later the application of ionic wind for heat transfer enhancement in both external and internal flows such as cooling of plates, circular tubes, channel, power chips and heat exchangers is reported. In addition, the delay in flow separation accounting for change in flow characteristics is also discussed. Some of the key outcomes and new designs of ionic wind generator are highlighted, which guides for further optimal design. Finally, the ongoing challenges and possible future research areas that can have impact on technology is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23.

Similar content being viewed by others

References

  1. Chattock A P X L I V 1899 On the velocity and mass of the ions in the electric wind in air. London Edinburgh Dublin Philos. Mag J. Sci. 48(294): 401–420

    Article  Google Scholar 

  2. Ferreira G F L, Oliveira O N and Giacometti J A 1986 Point-to-plane corona: current–voltage characteristics for positive and negative polarity with evidence of an electronic component. J. Appl. Phys. 59: 3045

    Article  Google Scholar 

  3. Moreau E and Touchard G 2008 Enhancing the mechanical efficiency of electric wind in corona discharges. J. Electrostat. 66: 39–44

    Article  Google Scholar 

  4. Kawamoto H and Umezu 2008 Electrostatic micro-ozone fan that utilizes ionic wind induced in pin-to-plate corona discharge system. J. Electrostat. 66(7): 445–454

    Article  Google Scholar 

  5. Go D B, Garimella S V, Fisher T S and Mongia R K 2007 Ionic winds for locally enhanced cooling. J. Appl. Phys. 102(5): 053302

    Article  Google Scholar 

  6. Kim C, Noh K C, Hyun J, Lee S G, Hwang J and Hong H 2012 Microscopic energy conversion process in the ion drift region of electrohydrodynamic flow. Appl. Phys. Lett. 100: 243906

    Article  Google Scholar 

  7. Shin D H, Yoon J S and Ko H S 2015 Experimental optimization of ion wind generator with needle to parallel plates for cooling device. Int. J. Heat Mass Transf. 84: 35–45

    Article  Google Scholar 

  8. Chen I Y, Guo M Z, Yang K S and Wang C C 2013 Enhanced cooling for LED lighting using ionic wind. Int. J. Heat Mass Transf. 57: 285–291

    Article  Google Scholar 

  9. Toyota H, Zama S, Akamine Y, Matsuoka S and Hidaka K 2002 Gaseous electrical discharge characteristics in air and nitrogen at cryogenic temperature. IEEE Trans. Dielectr. Electr. Insul. 9(6): 891–898

    Article  Google Scholar 

  10. Kim B, Lee S, Lee Y S and Kang K H 2012 Ion wind generation and the application to cooling. J. Electrostat. 70(5): 438–444

    Article  Google Scholar 

  11. Goldman M, Goldman A and Sigmond R S 1985 The corona discharge its properties and specific uses. Pure Appl. Chem. 57(9): 1353–1362

    Article  Google Scholar 

  12. Li L, Lee S J, Kim W and Kim D 2015 An empirical model for ionic wind generation by a needle-to-cylinder DC corona discharge. J. Electrostat. 73: 125–130

    Article  Google Scholar 

  13. Robinson M 1961 Movement of air in the electric wind of the corona discharge. Trans. Am. Instit. Electr. Eng. Part I Commun. Electr. 80(2): 143–150

    Google Scholar 

  14. Bondar H and Bastien F 1986 Effect of neutral fluid velocity on direct conversion from electrical to fluid kinetic energy in an electro-fluid-dynamics (EFD) device. J Phys. D. Appl. Phys. 19: 1657–1665

    Article  Google Scholar 

  15. Yabe A, Mori Y and Hijikata K 1978 EHD study of the corona wind between wire and plate electrodes. AIAA J. 16: 340–345

    Article  Google Scholar 

  16. Wang H C, Jewell-Larsen N E and Mamishev A V 2013 Thermal management of microelectronics with electrostatic fluid accelerators. Appl. Thermal Eng. 51: 190–211

    Article  Google Scholar 

  17. Fylladitakis E D, Theodoridis M P and Moronis A X 2014 Review on the history, research and applications of electrohydrodynamics. IEEE Trans. Plasma Sci. 42: 358–375

    Article  Google Scholar 

  18. Xu C L, Zheng H, Liu J, Chu J, Zeng X, Sun R and Liu S 2020 Enhanced cooling of LED filament bulbs using an embedded tri-needle/ring ionic wind device. Energies 13(11): 3008

    Article  Google Scholar 

  19. Mahmoudi A R, Pourfayaz F and Kasaeian A 2018 A simplified model for estimating heat transfer coefficient in a chamber with electrohydrodynamic effect (corona wind). J. Electrostat. 93: 125–136

    Article  Google Scholar 

  20. Go D B, Maturana R A, Fisher T S and Garimella S V 2008 Enhancement of external forced convection by ionic wind. Int. J. Heat Mass Transf. 51(25): 6047–6053

    Article  MATH  Google Scholar 

  21. Corke T C, Mertz B and Patel M P 2006 Plasma flow control optimized airfoil. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. AIAA Paper No. 2006-1208-9-15

  22. Xu H, He Y, Strobel K L and Gilmore C K 2018 Flight of an aeroplane with solid-state propulsion. Nature 563: 532–535

    Article  Google Scholar 

  23. Ramadan O E and Soo S L 1969 Electrohydrodynamic secondary flow. Phys. Fluids 12: 1943–1945

    Article  Google Scholar 

  24. Kim H J , Han B, Woo C G , Kim Y J , Park S J and Yoon J P 2015 Ozone emission and electrical characteristics of ionizers with different electrode materials, numbers, and diameters. In: Proceedings of the IEEE Industry Applications Society Annual Meeting, Addison, pp. 1–5

  25. Lukes P, Clupek M, Babicky V, Janda V and Sunka P 2005 Generation of ozone by pulsed corona discharge over water surface in hybrid gas–liquid electrical discharge reactor. J. Phys. D Appl. Phys. 38: 409–416

    Article  Google Scholar 

  26. Kuhl Johannes, Seeger Thomas, Zigan Lars, Will Stefan and Leipertz Alfred 2017 On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields. Combust. Flame 176: 391–399

    Article  Google Scholar 

  27. Kim H H, Takashima K, Katsura S and Mizuno A 2001 Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts. J. Phys. D Appl. Phys. 34: 604–613

    Article  Google Scholar 

  28. Ryu J, Wakida T and Takagishi T 1991 Effect of corona discharge on the surface of wool and its application to printing. Textile Res.. J. 61: 595–601

    Article  Google Scholar 

  29. Gilbert L A and George G T 1962 Electrical resistance of oxide films formed on the roll of a corona discharge roll-type separator. Nature 194: 1068–1069

    Article  Google Scholar 

  30. Gao M, Zhu Y, Yao X, Shi J and Shangguan W 2019 Dust removal performance of two-stage electrostatic precipitators and its influencing factors. Powder Technol. 348: 13–23

    Article  Google Scholar 

  31. Zhu Yong, Gao Mengxiang, Chen Mingxia, Shi Jianwei and Shangguan Wenfeng 2019 Numerical simulation of capture process of fine particles in electrostatic precipitators under consideration of electrohydrodynamics flow. Powder Technol. 354: 653–675

    Article  Google Scholar 

  32. Chua B, Wexler A S, Tien N C, Niemeier D A and Holmen B A 2013 Micro corona based particle steering air filter. Sens. Actuat. A Phys. 196: 8–15

    Article  Google Scholar 

  33. Masuyama K, and Barrett S R H 2013 On the performance of electrohydrodynamic propulsion. Proceedings of the Royal Society A 469

  34. Chua B and Son A 2014 Sensing absolute air pressure using micro corona discharge. Sens. Actuat. A Phys. 217: 49

    Article  Google Scholar 

  35. Timmermann E, Prehn F, Schmidt M, Höft H, Brandenburg R and Kettlitz M 2018 Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations Appl. Phys. 51(16): 164003

    Google Scholar 

  36. Hsu C P, Jewell-Larsen N E, Krichtafovitch I A, Montgomery S W, Dibene J T and Mamishev A V 2007 Miniaturization of electrostatic fluid accelerators. J. Microelectromech. Syst. 16: 809–815

    Article  Google Scholar 

  37. Kawamoto H and Umezu S 2005 Electrohydrodynamic deformation of water surface in a metal pin to water plate corona discharge system. J. Phys. D Appl. Phys. 38: 887–894

    Article  Google Scholar 

  38. Bastien F 1987 Acoustics and gas discharges: application to loudspeakers. J. Phys. D Appl. Phys. 20: 1547–1557

    Article  Google Scholar 

  39. Defraeye T and Martynenko A 2018 Electrohydrodynamic drying of food: new insights from conjugate modelling. J. Clean. Product. 198: 269–284

    Article  Google Scholar 

  40. Defraeye T and Martynenko A 2019 Electrohydrodynamic drying of multiple food products: evaluating the potential of emitter–collector electrode configurations for upscaling. J. Food Eng. 240: 38–42

    Article  Google Scholar 

  41. Dinani S T and Havet M 2015 The influence of voltage and air flow velocity of combined convective–electrohydrodynamic drying system on the kinetics and energy consumption of mushroom slices. J. Clean. Product. 95: 203–211

    Article  Google Scholar 

  42. Martynenko A, Bashkir I and Kudra T 2019 Electrically enhanced drying of white champignons. Drying Technol. 39: 1–11

    Google Scholar 

  43. Martynenko A, Kudra T and Defraeye T 2019 Temperature depression in EHD drying. In: Proceedings of Euro Drying, Torino, Italy, 10–12

  44. Martynenko A, Astatkie T and Defraeye T 2020 The role of convection in electrohydrodynamic drying. J. Food Eng. 271: 1–4

    Article  Google Scholar 

  45. Ni J, Ding C, Zhang Y and Song Z 2020 Impact of different pre-treatment methods on drying characteristics and microstructure of goji berry under electrohydrodynamic (EHD) drying process. Innov. Food Sci. Emerg. Technol. 61: 1–9

    Article  Google Scholar 

  46. Bai Y, Qu M, Luan Z, Li X and Yang Y 2013 Electrohydrodynamic drying of sea cucumber (Stichopus japonicus). LWT - Food Sci. Technol. 54: 570

    Article  Google Scholar 

  47. Dinani S T, Hamdami N, Shahedi M and Keramat J 2014 Optimization of carboxymethyl cellulose and calcium chloride dip-coating on mushroom slices prior to hot air drying using response surface methodology. J. Food Process. Preserv. 38: 1269–1277

    Article  Google Scholar 

  48. Dinani S T, Hamdami N, Shahedi M and Havet M 2014 Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices. Energy Convers. Manag. 86: 70–79

    Article  Google Scholar 

  49. Yang M and Ding C 2016 Electrohydrodynamic (EHD) drying of the Chinese wolfberry fruits. SpringerPlus 5(909): 1–20

    Google Scholar 

  50. Zhang B, He J and Ji Y 2017 Dependence of the average mobility of ions in air with pressure and humidity. IEEE Trans. Dielectr. Electr.Insul. 24(2): 923–929

    Article  Google Scholar 

  51. Washburn E W 2003 International critical tables of numerical data, physics chemistry and technology, 1st. Electronic Knovel Corporation, New York, pp 1926–1930

    Google Scholar 

  52. Owsenek B L and Seyed-Yagoobi J 1997 Theoretical and experimental study of electrohydrodynamic heat transfer enhancement through wire–plate corona discharge. J. Heat Transf. 119: 604–610

    Article  Google Scholar 

  53. Boulos M, Fauchais P and Pfender E 1994 Thermal plasmas: fundamentals and applications. Plenum Press, New York

    Book  Google Scholar 

  54. Colas D F, Ferret A, Pai D Z, Lacoste D A and Laux C O 2010 Ionic wind generation by a wire–cylinder–plate corona discharge in air at atmospheric pressure. J. Appl. Phys. 108: 103306–103306–103316

    Article  Google Scholar 

  55. Kiousis K N, Moronis A X and Fylladitakis E D 2015 Ionic wind generation during positive corona discharge in a wire–cylinder air gap. Int. J. Eng. Sci. Innov. Technol. 4: 229–239

    Google Scholar 

  56. Liang W J and Lin T H 1994 The characteristics of ionic wind and its effect on electrostatic precipitators. Aerosol Sci. Technol. 20: 330–344

    Article  Google Scholar 

  57. Chen S and Van den berg R G W and Nijdam S, 2018 The effect of DC voltage polarity on ionic wind in ambient air for cooling purposes. Plasma Sources Sci. Technol. 27: 055021

    Article  Google Scholar 

  58. Moreau E, Louste C and Touchard G 2008 Electric wind induced by sliding discharge in air at atmospheric pressure. J. Electrostat. 66: 107–114

    Article  Google Scholar 

  59. Moreau E, Audier P and Benard N 2018 Ionic wind produced by positive and negative corona discharges in air. J. Electrostat. 93: 85–96

    Article  Google Scholar 

  60. Li H, Jiang L, Guo C, Zhu J, Jiang Y, Xiao W, Fang C and Chen Z 2017 Effect of cylinder electrode arrangement on the ionic wind properties of needle–cylinder electrodes. J. Electrostat. 86: 59–68

    Article  Google Scholar 

  61. Kim C, Park D, Noh K C and Hwang J 2010 Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration. J. Electrostat. 68: 36–41

    Article  Google Scholar 

  62. Rickard M, Dunn-Rankin D, Weinberg F and Carleton F 2005 Characterization of ionic wind velocity. J. Electrostat. 63: 711–716

    Article  Google Scholar 

  63. Rickard M, Dunn-Rankin D, Weinberg F and Carleton F 2006 Maximizing ion-driven gas flows. J. Electrostat. 64: 368–376

    Article  Google Scholar 

  64. Zhao L and Adamiak K 2005 EHD flow in air produced by electric corona discharge in pin–plate configuration. J. Electrostat. 63: 337–350

    Article  Google Scholar 

  65. Rafika M, Ramzi H and Sassi B N 2009 A study of DC surface plasma discharge in absence of free airflow: ionic wind velocity profile. J. Appl. Fluid Mech. 2(2): 43–48

    Google Scholar 

  66. Dau V T, Dinh T X, Bui T T, Tran C D, Phan H T and Terebessy T 2016 Corona based air-flow using parallel discharge electrodes. Exp. Thermal Fluid Sci. 79: 52–76

    Article  Google Scholar 

  67. Zhang Y, Liu L and Ouyang J 2014 On the negative corona and ionic wind over water electrode surface. J. Electrostat. 72: 76–81

    Article  Google Scholar 

  68. Moreau E, Audier P, Orriere T and Benard N 2019 Electrohydrodynamic gas flow in a positive corona discharge. J. Appl. Phys. 125(13): 1333303

    Article  Google Scholar 

  69. Defoort E, Bellanger R, Dupeyrat C B and Moreau E 2020 Ionic wind produced by a DC needle-to-plate corona discharge with a gap of 15 mm. J. Phys. D Appl. Phys 53(17): 175202

    Article  Google Scholar 

  70. Jose J, Ramanujam S and Philip L 2019 Applicability of pulsed corona discharge treatment for the degradation of chloroform. Chem. Eng. J. 360: 1341–1354

    Article  Google Scholar 

  71. Defoort E, Benard N and Moreau E 2017 Ionic wind produced by an electro-aerodynamic pump based on corona and dielectric barrier discharges. J. Electrostat. 88: 35–40

    Article  Google Scholar 

  72. Park S, Cvelbar U, Choe W and Moon S Y 2018 Creation of electric wind due to electrohydradynamic force. Nat. Commun. 9(1): 371

    Article  Google Scholar 

  73. Chen S, Nobelen J C P Y and Nijdam S 2017 A self-consistent model of ionic wind generation by negative corona discharges in air with experimental validation. Plasma Sources Sci. Technol. 26(9): 095005

    Article  Google Scholar 

  74. Zhou D, Tang J, Kang P, Wei L and Zhang C 2018 Effects of magnetic field intensity on ionic wind characteristics. J. Electrostat. 96: 99–103

    Article  Google Scholar 

  75. Drews A M, Cademartiri L, Whitesides G M and Bishop K J M 2013 Electric winds driven by time oscillating corona discharges. J. Appl. Phys. 114: 143302

    Article  Google Scholar 

  76. Cagnoni D, Agostini F, Christen T, Falco C D, Parolini N and Stevanovic I 2013 Multiphysics simulation of corona discharge induced ionic wind. J. Appl. Phys. 114: 233301

    Article  Google Scholar 

  77. Martins A A 2013 Modelling of an improved positive corona thruster and actuator. J. Electrostat. 71: 61–67

    Article  Google Scholar 

  78. Adamiaka K and Atten P 2008 Simulation of corona discharge in point–plane configuration. J. Electrostat. 61(2): 85–98

    Article  Google Scholar 

  79. Johnson T, Jakobsson S, Wettervik B, Andersson B, Mark A and Edelvik F 2015 A finite volume method for electrostatic three species negative corona discharge simulations with application to externally charged powder bells. J. Electrostat. 74: 27–36

    Article  Google Scholar 

  80. Ramadhan A M, Kapur N, Summers J L and Thompson H M 2017 Numerical analysis and optimization of miniature electrohydrodynamic air blowers. IEEE Transactions on Plasma Science 45: 3007–3018

    Article  Google Scholar 

  81. Masuyama K and Barrett S R H 2013 On the performance of electrohydrodynamic propulsion. Proc. R. Soc. A 469

  82. Monrolin N, Praud O and Plouraboue F 2018 Electrohydrodynamic ionic wind, force field and ionic mobility in a positive DC wire-to-cylinders corona discharge in air. Phys. Rev. Fluids 3: 063701/1–063701/20

  83. Gilmore C K and Barrett S R H 2015 Electro hydrodynamic thrust density using positive corona-induced ionic winds for in-atmosphere propulsion. Proc. R. Soc. A 2175

  84. Ashpis D E and Laun M C 2017 Dielectric barrier discharge plasma actuator thrust measurement methodology incorporating antithrust hypothesis. AIAA J. 55: 4181–4192

    Article  Google Scholar 

  85. Dau V, Dinh T X, Tran C D and Tung B T 2018 A study of angular rate sensing by corona discharge ion wind. Sens. Actuat. A Phys. 277: 169–180. https://doi.org/10.1016/j.sna.2018.05.021

    Article  Google Scholar 

  86. Rashkovan A, Sher E and Kalman H 2002 Experimental optimization of an electric blower by corona wind. App. Thermal Eng. 22: 1587–1599

    Article  Google Scholar 

  87. Ahmedou S O and Havet M 2009 Effect of process parameters on the EHD airflow. J. Electrostat. 67: 222–227

    Article  Google Scholar 

  88. Elagin I A, Yakovlev V V, Ashikhmin I A and Stishkov Y K 2016 Experimental investigation of cooling of a plate by ionic wind from a corona-forming wire electrode. Tech. Phys. 61(8): 1214–1219

    Article  Google Scholar 

  89. Johnson M J and Go D B 2016 Impingement cooling using the ionic wind generated by a low-voltage piezoelectric transformer. Front. Mech. Eng. 7(2)

  90. Tsui Y Y, Huang Y X, Lan C C and Wang C C 2017 A study of heat transfer enhancement via corona discharge by using a plate corona electrode. J. Electrostat. 87: 1–10

    Article  Google Scholar 

  91. Wang S, Qu J G, Kong L J, Zhang J F and Qu J G 2019 Numerical and experimental study of heat-transfer characteristics of needle-to-ring-type ionic wind generator for heated-plate cooling. Int. J. Thermal Sci. 139: 176–185

    Article  Google Scholar 

  92. Atalık K and Sonmezler U 2011 Heat transfer enhancement for boundary layer flow over a wedge by the use of electric fields. Appl. Math. Modell. 35: 4516–4525

    Article  Google Scholar 

  93. Elagin I A, Markovskii Y P and Stishkov Y K 2020 Experimental investigation of plate cooling by ionic wind from a needle electrode. Tech. Phys. 65(4): 542–547

    Article  Google Scholar 

  94. Ohadi M M, Nelson D A and Zia S 1991 Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge. Int. J. Heat Mass Transf. 34: 1175–1187

    Article  Google Scholar 

  95. Molki M and Bhamidipati K L 2004 Enhancement of convective heat transfer in the developing region of circular tubes using corona wind. Int. J. Heat Mass Transf. 47: 4301–4314

    Article  Google Scholar 

  96. Lakeh R B and Molki M 2012 Targeted heat transfer augmentation in circular tubes using a corona jet. J. Electrostat. 70: 31–42

    Article  Google Scholar 

  97. Deylami H M, Amanifard N, Dolati F, Kouhikamali R and Mostajiri K 2013 Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel. J. Electrostat. 71: 656–665

    Article  Google Scholar 

  98. Wang W, Yang L, Wu K, Lin C, Huo P, Liu S, Huang D and Lin M 2017 Regulation-controlling of boundary layer by multi-wire-to-cylinder negative corona discharge. Appl. Thermal Eng. 119: 438–448

    Article  Google Scholar 

  99. Shin D H, Jang D K, Sohn D K and Ko H S 2019 Control of boundary layer by ionic wind for heat transfer. Int. J. Heat Mass Transf. 131: 189–195

    Article  Google Scholar 

  100. Zehtabiyan-Rezaie N, Saffar-Avval M and Adamiak K 2020 Forced convection heat transfer enhancement using a coaxial wire–tube corona system. J. Electrostat. 103: 103415

    Article  Google Scholar 

  101. Gallandat N, Bonetto F and Mayor J R 2017 Ionic wind heat transfer enhancement in vertical rectangular channels: experimental study and model validation. J. Thermal Sci. Eng. Appl. 9: 1–9

    Article  Google Scholar 

  102. Kasayapanand N 2008 Electrohydrodynamic enhancement of heat transfer in vertical fin array using computational fluid dynamics technique. Int. Commun. Heat Mass Transf. 35: 762–770

    Article  Google Scholar 

  103. Peng M, Wang T H and Wang X D 2016 Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel. Int. J. Heat Mass Transf. 93: 1072–1081

    Article  Google Scholar 

  104. Moghanlou F S, Khorrami A S, Esmaeilzadeh E and Aminfar H 2014 Experimental study on electrohydrodynamically induced heat transfer enhancement in a minichannel. Exp. Thermal Fluid Sci. 59: 24–31

    Article  Google Scholar 

  105. Zhang J and Lai F C 2018 Heat transfer enhancement using corona wind generator. J. Electrostat. 92: 6–13

    Article  Google Scholar 

  106. Kalman H and Sher E 2001 Enhancement of heat transfer by means of a corona wind created by a wire electrode and confined wings assembly. Appl. Thermal Eng. 21: 265–282

    Article  Google Scholar 

  107. Schlitz D J, Garimella S V and Fisher T S 2004 Microscale ion-driven air flow over a flat plate. In: Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC

  108. Lee Jae II, Yu Jin H, Young J H, Chull A Y, Soo S H and Keun L J 2005 Characteristic of the ion wind using corona discharge and enhancement of heat transfer. Korean Journal of Air-Conditioning and Refrigeration Engineering 17

  109. Esmaeilzadeh E, Alamgholilou A, Mirzaie H and Ashna M 2008 Heat transfer enhancement in the presence of an electric field at low and intermediate Reynolds numbers. Asian J. Sci. Res. 1: 562–578

    Article  Google Scholar 

  110. June M S, Kribs J and Lyons K M 2011 Measuring efficiency of positive and negative ionic wind devices for comparison to fans and blowers. J. Electrostat. 69: 345–350

    Article  Google Scholar 

  111. Chen I Y, Chen C J and Wang C C 2014 Influence of electrode configuration on the heat transfer performance of a LED heat source. Int. J. Heat Mass Transf. 77: 795–801

    Article  Google Scholar 

  112. Qu J, Kong L and Zhang J 2018 Experimental investigation on flow and heat transfer characteristics of a needle-cylinder type ionic wind generator for LED cooling. Energies 11(5): 1149

    Article  Google Scholar 

  113. Shin D H, Sohn D K and Ko H S 2018 Analysis of thermal flow around heat sink with ionic wind for high-power LED. Appl. Thermal Eng. 143: 376–384

    Article  Google Scholar 

  114. Ramadhan A A, Kapur N, Summers J L and Thompson H M 2018 Numerical development of EHD cooling systems for laptop applications. Appl. Thermal Eng. 139: 144–156

    Article  Google Scholar 

  115. Wang J, Zhua T, Cai Y X, Bao Y C and Wang J B 2020 Comparison of the generation characteristics and application performance of nano materials-enhanced ionic wind. Int. Commun. Heat Mass Transf. 117: 104734

    Article  Google Scholar 

  116. Feng J, Wang C H, Liu Q and Wu C 2019 Enhancement of heat transfer via corona discharge by using needle–mesh and needle–fin electrodes. Int. J. Heat Mass Transf. 130: 640–649

    Article  Google Scholar 

  117. Larsen N E J, Karpov S V, Krichtafovitch I A, Jayanty V, Hsu C P and Mamishev A V 2008 Modeling of corona-induced electrohydrodynamic flow with COMSOL Multiphysics. In: Proceedings of the ESA Annual Meeting on Electrostatics

  118. Ong A O, Abramson A R and Tien N C 2014 Electrohydrodynamic microfabricated ionic wind pumps for thermal management applications. J. Heat Transf. 136(6): 061703

    Article  Google Scholar 

  119. Jingguo Q, Zhang J, Li M and Tao W 2020 Heat dissipation of electronic components by ionic wind from multi-needle electrodes discharge: experimental and multi-physical analysis. Int. J. Heat Mass Transf. 163: 120406

    Article  Google Scholar 

  120. Zeng M J, Zhang J F, Wang S and Qu Z G 2021 Analysis of a two-stage ionic wind pump with multiple needle- to-mesh electrodes for cooling electronics. Appl. Thermal Eng. 185: 116340

    Article  Google Scholar 

  121. Wang J, Cai Y X and Li X H 2018 Ionic wind development in corona discharge for LED cooling. IEEE Trans. Plasma Sci. 46(5): 1821–1830

    Article  Google Scholar 

  122. Wang J, Cai Y X and Li X H 2018 Experimental study on optical–thermal associated characteristics of LED car lamps under the action of ionic wind. Micro-electr. Reliab. 82: 113–123

    Article  Google Scholar 

  123. Wang J, Zhu T and Cai Y X 2020 Development and application of a solid-state fan for enhanced heat dissipation. Appl. Thermal Eng. 169: 114922

    Article  Google Scholar 

  124. Bao Y C, Cai Y X and Wang J 2019 Experimental study on LED heat dissipation based on enhanced corona wind by graphene decoration. IEEE Trans. Plasma Sci. 47(8): 4121–4126

    Article  Google Scholar 

  125. Wang J, Zhu T, Wang J-b, Cai Y-x and Li X-h 2020 Optimization of a green solid-state fan for electronics cooling applications. Sustain. Energy Technol. Assess. 39: 100703

    Google Scholar 

  126. Lee J R and Von Lau E 2021 Convective heat transfer enhancement of ionic wind under variable air pressures. Int. J. Thermal Sci. 160: 106657

    Article  Google Scholar 

  127. Wang J-B, Li X-H, Wang J, Zhu T and Bao Y-C 2020 Thermal performance evaluation of a thermoelectric cooler coupled with corona wind. Appl. Thermal Eng. 179: 115753

    Article  Google Scholar 

  128. Wang J, Zhu T, Cai Y-x, Zhang J-f and Wang J-b 2020 Review on the recent development of corona wind and its application in heat transfer enhancement. Int. J. Heat Mass Transf. 152: 119545

    Article  Google Scholar 

  129. Wang J, Rong F and Xuegong H 2019 Experimental study on EHD heat transfer enhancement with a wire electrode between two divergent fins. Appl. Thermal Eng. 148: 457–465

    Article  Google Scholar 

  130. Wang J, Cai Y X and Li X H 2017 Experimental investigation of high-power light-emitting diodes thermal management by ionic wind. Appl. Thermal Eng. 122: 49–58

    Article  Google Scholar 

  131. Zheng C H, Zhang X F and Yang Z D 2018 Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect. J. Aerosol Sci. 118: 22–33

    Article  Google Scholar 

  132. Shin D H, Baek S H and Ko H S 2016 Development of heat sink with ionic wind for LED cooling. Int. J. Heat Mass Transf. 93: 516–528

    Article  Google Scholar 

  133. Chau S W, Lin C H, Yeh C H and Yang C 2007 Study on the cooling enhancement of LED heat sources via an electrohydrodynamic approach. In: Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, pp. 2934–2937

  134. Dau Van Thanh, Dinh Thien Xuan, Bui Tung Thanh and Terebessy Tibor 2016 Bipolar corona assisted jet flow for fluidic application. Flow Meas. Instrum. 50: 252–260

    Article  Google Scholar 

  135. Shin D H, Baek S H and Ko H S 2018 Analysis of counter flow of corona wind for heat transfer enhancement. Heat Mass Transfer 54: 841–854

    Article  Google Scholar 

  136. Go D B, Maturana R A, Mongia R K, Garimella S V and Fisher T S 2008 Ionic winds for enhanced cooling in portable platforms. In: Proceedings of the Electronics Packaging Technology Conference, EPTC 2008, 10th Source, IEEE Xplore [4763520]

  137. Jewell-Larsen N E, Ran H, Zhang Y, Schwiebert M K and Honer K A 2009 Electrohydrodynamic (EHD) cooled laptop. In: Proceedings of the Semiconductor Thermal Measurement and Management Symposium, SEMI-THERM 2009, 25th Annual IEEE [4810773]

  138. Andojo Ongkodjojo Ong, Abramson A R and Tien N C 2012 Optimized and microfabricated ionic wind pump array as a next generation solution for electronics cooling systems. In: Proceedings of the 13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE ITherm Conference 2012, May 30–June 1, 2012, San Diego, California, USA, pp. 1306 – 1311

  139. Lee S J, Ki L and Won K K 2015 Parallel integration of ionic wind generators on PCBs for enhancing flow rate. Microsyst. Technol. 21(7): 1465–1471

    Article  Google Scholar 

  140. Belan M and Messanelli F 2015 Compared ionic wind measurements on multi-tip corona and DBD plasma actuators. J. Electrostat. 76: 278–287

    Article  Google Scholar 

  141. Fylladitakis E D, Moronis A X and Konstantinos K 2014 Design of a prototype EHD air pump for electronic chip cooling applications. Plasma Sci. Technol. 16(5)

  142. Ong A O, Abramson A R and Tien N C 2014 Electrohydrodynamic microfabricated ionic wind pumps for thermal management applications. J. Heat Transf. 136(11): 061703

    Google Scholar 

  143. Shin D H, Kim S, SeoKo H and Shin Y W 2018 Performance enhancement of heat recovery from engine exhaust gas using corona wind. Energy Conv. Manag. 173: 210–218

    Article  Google Scholar 

  144. Sheu W J, Hsiao J J and Wang C C 2013 Effect of oscillatory EHD on the heat transfer performance of a flat plate. Int. J. Heat Mass Transf. 61: 419–424

    Article  Google Scholar 

  145. Lee J R and Lau E V 2017 Effects of relative humidity in the convective heat transfer over flat surface using ionic wind. Appl. Thermal Eng. 114: 554–560

    Article  Google Scholar 

  146. Nguyen N C, Garcia C G, Peraire J and Sanchez M 2017 Computational study of glow corona discharge in wind: biased conductor. J. Electrostat. 89: 1–12

    Article  Google Scholar 

  147. Tsubone H, Ueno J, Komeili B, Minami S, Harvel G D, Urashima K, Ching C Y and Chang J S 2008 Flow characteristics of DC wire–non-parallel plate electrohydrodynamic gas pumps. J. Electrostat. 66: 115–121

    Article  Google Scholar 

  148. Spyrou N, Held B, Peyrous R, Manassis C and Pignolet P 1992 Gas temperature in a secondary streamer discharge: an approach to the electric wind. J. Phys. D Appl. Phys. 25: 211–216

    Article  Google Scholar 

  149. Khabiry S E and Colver G M 1997 Drag reduction by DC corona discharge along an electrically conductive flat plate for small Reynolds number flow. Phys. Fluids 9: 587–599

    Article  Google Scholar 

  150. Hger L L, Moreau E, Artana G and Touchard G H 2001 Influence of a DC corona discharge on the air flow along an inclined flat plate. J. Electrostat. 51: 300–306

    Google Scholar 

  151. Labergue A, Leger L, Moreau E and Touchard G 2005 Effect of a plasma actuator on an airflow along an inclined wall: P.I.V. and wall pressure measurements. J. Electrostat. 63: 961–967

    Article  Google Scholar 

  152. Chun Y N, Chang J S, Berezin A A and Mizeraczyk J 2007 Numerical modeling of near corona wire electrohydrodynamic flow in a wire–plate electrostatic precipitator. IEEE Trans. Dielectr. Electr. Insul. 14(1): 119–124

    Article  Google Scholar 

  153. Magnier P, Hong D, Chesneau A L, Pouvesle J M and Hureau J 2007 Control of separated flows with the ionic wind generated by a DC corona discharge. Exp. Fluids 42: 815–825

    Article  Google Scholar 

  154. Renev M E, Safronova Y F and Stishkov Y K 2019 Controlling the flow around a circular cylinder by means of a corona discharge. Tech. Phys. 64(9): 1275–1282

    Article  Google Scholar 

  155. Chang J S, Brocilo D, Urashima K, Dekowski J, Podlinski J, Mizeraczyk J and Touchard G 2006 On-set of EHD turbulence for cylinder in cross flow under corona discharges. J. Electrostat. 64: 569–573

    Article  Google Scholar 

  156. Boucinha V, Weber R and Kourta A 2011 Drag reduction of a 3D bluff body using plasma actuators. Int. J. Aerodyn. 1: 262–281

    Article  Google Scholar 

  157. Guangyin Z, Yinghong L, Hua L, Menghu H and Yun W 2015 Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators. Chin. J. Aeronaut. 28: 368–376

    Article  Google Scholar 

  158. Chaudhry I A, Sultan T, Siddiqui F A, Farhan M and Asim M 2017 The flow separation delay in the boundary layer by induced vortices. J. Visual. 20(2): 251–261

    Article  Google Scholar 

  159. Johnson M J and Go D B 2015 Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air. J. Appl. Phys. 118: 243304

    Article  Google Scholar 

  160. Zhao P, Portugal S and Roy S 2015 Efficient needle plasma actuators for flow control and surface cooling. Appl. Phys. Lett. 107: 033501

    Article  Google Scholar 

  161. Guo X, Zhang Q and Zhang J 2017 Improvement of corona discharge model and its application on simulating corona discharge in the presence of wind. Hindawi

  162. Le N R and Labbe J P 1983 Corrosion by corona discharges: determination of corrosion products by vibrational spectroscopy. In: Proceedings of the 13th Meeting of the Franco-British Group on Electrical Discharges, Glasgow

  163. Flitti A and Pancheshnyi S 2009 Gas heating in fast pulsed discharges in N2–O2 mixtures. Eur. Phys. J. Appl. Phys. 45: 21001

    Article  Google Scholar 

  164. Koutsoubis J M and MacGregor S J 2000 Electrode erosion and lifetime performance of a high repetition rate triggered corona-stabilized switch in air. J. Phys. D Appl. Phys. 33(9): 1093

    Article  Google Scholar 

  165. Noll C G and Lawless P A 1998 Comparison of germanium and silicon needles as emitter electrodes for air ionizers. J. Electrostat. 44: 221–238

    Article  Google Scholar 

  166. El-Bahy M M and El-Ata M A A 2005 Onset voltage of negative corona on dielectric-coated electrodes in air. J. Phys. D Appl. Phys. 38: 3403–3411

    Article  Google Scholar 

  167. Gottschalk C, Libra J and Saupe A 2009 Ozonation of water and waste water. Wiley, Weinheim

    Book  Google Scholar 

  168. Kim H H 2010 Nonthermal plasma processing for air pollution control: a historical review, current issues and future prospects. Plasma Process. Polym. 1: 91–110

    Article  Google Scholar 

  169. The National Institute for Occupational Safety and Health 1978 Occupational health guideline for ozone

  170. Wiesinger R, Martina I, Kleber C and Schreiner M 2013 Influence of relative humidity and ozone on atmospheric silver corrosion. Corros. Sci. 77: 69–76

    Article  Google Scholar 

  171. Lin H and Frankel G S 2013 Atmospheric corrosion of Cu by UV, ozone and NaCl. Corros. Eng. Sci. Technol. 48(6): 461–468

    Article  Google Scholar 

  172. Prehn F, Timmermann E, Kettlitz M, Schaufler K, Gunther S and Hahn V 2020 Inactivation of airborne bacteria by plasma treatment and ionic wind for indoor air cleaning. Plasma Process. Polymers 17(9)

  173. Nayak G, Andrews A J, Marabella I, Aboubakr H A, Goyal S M, Olson B A, Torremorell M and Bruggeman P J 2020 Rapid inactivation of airborne porcine reproductive and respiratory syndrome virus using an atmospheric pressure air plasma. Plasma Process. Polymers 17(10)

  174. Orriere T, Moreau E and Pai D Z 2019 Electric wind generation by nanosecond repetitively pulsed micro plasmas. J. Phys. Appl. Phys. 52(46): 464002

    Article  Google Scholar 

  175. Shi Y, Cai Y X, Fan R L, Cui Y X, Chen Y and Ji L 2019 Characterization of soot inside a diesel particulate filter during a nonthermal plasma promoted regeneration step. Appl. Thermal Eng. 150: 612–619

    Article  Google Scholar 

  176. Wang P, Gu W Y and Lei L L 2015 Micro-structural and components evolution mechanism of particular matter from diesel engines with non-thermal plasma technology. Appl. Thermal Eng. 91: 1–10

    Article  Google Scholar 

  177. Greene K 2009 A laptop cooled with ionic wind. MIT Technology Review

  178. Wu Y S, Li J, Ye J C, Chen X, Li H, Huang S, Zhao R and Yang W O 2017 Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration. J. Phys. D Appl. Phys. 50(39): 395304

    Article  Google Scholar 

  179. Wang J, Cai Y X and Bao Y C 2019 Enhanced ionic wind generation by graphene for LED heat dissipation. Int. J. Energy Res. 43

  180. Zhang J F, Kong L J and Qu J G 2019 Numerical and experimental investigation on configuration optimization of the large-size ionic wind pump. Energy 171: 624–630

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saravanan Venkatesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, S., Kumar, A., Bhattacharya, A. et al. Ionic wind review-2020: advancement and application in thermal management. Sādhanā 46, 165 (2021). https://doi.org/10.1007/s12046-021-01687-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-021-01687-0

Keywords

Navigation