Skip to main content

Advertisement

Log in

Metal oxide nanofluids in electronic cooling: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Loop heat pipe (LHP) has gained significant interest, particularly in the field of cooling electronics, and has been considered as an efficient heat transfer device in today’s electronic technologies. LHP is preferred over conventional heat pipes (HP) due to the high efficiency, high heat flux capability, ability to transfer energy over long distances and ability to operate over a range of environments. Brief comparisons between HP and LHP for electronic cooling are discussed. For the past 10 years, numerous studies have reported on the synthesis of nanofluids used in LHP for cooling electronics. Nanofluids have been widely used in electronic applications due to their superior heat transfer and thermal properties. The nanofluid fabrication, stability and surfactants are reviewed. Recent works on metal oxide nanofluids and properties that influence the thermophysical properties of nanofluids, such as thermal conductivity, viscosity and surface tension, are also reported. Another intention behind this review is to explain the challenges of metal oxide nanofluids in electronics cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. G. Colango, E. Favale, M. Milanese, A. de Risi, D. Laforgia, Appl. Therm. Eng. 127, 421–435 (2017)

    Google Scholar 

  2. S.M.S. Murshed, Introductory Chapter: Electronics Cooling-An Overview. Electronics Cooling (IntechOpen, 2016)

  3. M. Bahiraei, S. Heshmatian, Energy Convers. Manag. 172, 438–456 (2018)

    CAS  Google Scholar 

  4. A.A. Almubarak, Int. J. Eng. Res. Appl. 7, 52–57 (2017)

    Google Scholar 

  5. U.S. Department of Defense, Reliability Predicition of Electronic Equipment (Springfield, VA, 1974)

  6. S.M.S. Murshed, C.A.N. de Castro, Renew. Sustain. Energy Rev. 78, 821–833 (2017)

    Google Scholar 

  7. M.D. Shende, A. Mahalle, IOSR, J. Mech. Civ. Eng. 5, 56–61 (2013)

    Google Scholar 

  8. W.A. Scott, Cooling of Electronic Equipment (Wiley, New York, 1974), p. 295

    Google Scholar 

  9. C.C.M. de Oliveira, M.C. Gutierrez, V.S. Junior, Food Sci. Technol. 34, 416–421 (2014)

    Google Scholar 

  10. D. Wen, G. Lin, S. Vafaei, K. Zhang, Particuology 7, 141–150 (2009)

    CAS  Google Scholar 

  11. N. Ali, J.A. Teixeira, A. Addali, J. Nanomater. (2019). https://doi.org/10.1155/2019/3930572

    Article  Google Scholar 

  12. K.S. Suganthi, K.S. Rajan, Int. J. Heat Mass Transf. 55, 7969–7980 (2012)

    CAS  Google Scholar 

  13. K.S. Suganthi, K.S. Rajan, Renew Sustain. Energy Rev. 76, 226–255 (2017)

    CAS  Google Scholar 

  14. M. Gupta, V. Singh, R. Kumar, Z. Said, Renew. Sustain. Energy Rev. 74, 638–670 (2017)

    CAS  Google Scholar 

  15. V. Sridhara, L.N. Satapathy, Nanoscale Res. Lett. 6, 456 (2011)

    Google Scholar 

  16. H. Jouhara, A. Chauhan, T. Nannou, S. Almahmoud, B. Delpech, L.C. Wrobel, Energy 128, 729–754 (2017)

    Google Scholar 

  17. W. Srimuang, P. Amatachaya, Renew. Sustain. Energy Rev. 16, 4303–4315 (2012)

    CAS  Google Scholar 

  18. Y.F. Maydanik, M.A. Chernysheva, V.G. Pastukhov, Appl. Therm. Eng. 67, 294–307 (2014)

    CAS  Google Scholar 

  19. Y.F. Maydanik, Appl. Therm. Eng. 25, 635–657 (2005)

    Google Scholar 

  20. D. Wang, Z. Liu, S. He, J. Yang, W. Liu, Int. J. Heat Mass Transf. 89, 33–41 (2015)

    Google Scholar 

  21. C.W. Chan, E. Siqueiros, J.L. Chin, M. Royapoor, A.P. Roskilly, Renew. Sustain. Energy Rev. 50, 615–627 (2015)

    CAS  Google Scholar 

  22. S. Mohapatra, 2006. An Overview of Liquid Coolants for Electronics Cooling. Electronics Cooling (IntechOpen, 2016), pp. 1–6

  23. Ashrae, ASHRAE Handbook Fundamentals (Amer Soc of Heating, Refrigerating and AC Engineers, 2001)

  24. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 110, 2574 (2010)

    CAS  Google Scholar 

  25. I. Khan, K. Saeed, I. Khan, Arab. J. Chem. 12, 908–931 (2017)

    Google Scholar 

  26. H.A. Mohammed, A.A. Al-Aswadi, N.H. Shuaib, R. Saidur, Renew. Sustain. Energy Rev. 15, 2921–2939 (2011)

    CAS  Google Scholar 

  27. U.S. Shenoy, A.N. Shetty, Front Mater. Sci. 12, 74–82 (2018)

    Google Scholar 

  28. L. Kong, J. Sun, Y. Bao, RSC Adv. 7, 12599–12609 (2017)

    CAS  Google Scholar 

  29. S. Mukherjee, P.C. Mishra, P. Chaudhuri, ChemBioEng Rev. 5, 312–333 (2018)

    CAS  Google Scholar 

  30. S. Harkirat, D. Gangacharyulu, Part Sci. Technol. 5, 1–8 (2016)

    Google Scholar 

  31. M.A. Sabiha, R.M. Mostafizur, R. Saidur, M. Saad, Int. J. Heat Mass Transf. 93, 862–871 (2016)

    CAS  Google Scholar 

  32. D.H. Fontes, G. Ribatski, E.P.B. Filho, Diamond Relat. Mater. 58, 115–121 (2015)

    CAS  Google Scholar 

  33. I.S. Umer, P. Rajashekhar, N. Marneni, S. Lim, Energy Convers. Manag. 142, 215–229 (2017)

    Google Scholar 

  34. L. Liu, M. Wang, Y. Liu, Asia-Pacific Energy Equipment Engineering Research Conference, Zhuhai (2015)

  35. Y. Hwang, J.K. Lee, J.K. Lee, Y.M. Jeong, S. Cheong, Y.C. Ahn, S.H. Kim, Powder Technol 186(2), 145–153 (2008)

    CAS  Google Scholar 

  36. I.M. Mahbubul, R. Saidur, M.A. Amalina, M.E. Niza, Int. Commun. Heat Mass Transf. 76, 33–40 (2016)

    CAS  Google Scholar 

  37. S. Lee, S.S. Choi, S.A. Li, J.A. Eastman, J. Heat Transf. 121, 280–289 (1999)

    CAS  Google Scholar 

  38. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Curr. Appl. Phys. 9, 131–139 (2009)

    Google Scholar 

  39. H. Chang, Y.C. Wu, X.Q. Chen, M.J. Kao, Taipei Univ. Technol. J. 5, 201–208 (2007)

    Google Scholar 

  40. H. Chang, C.S. Jwo, P.S. Fan, S.H. Pai, Int. J. Adv. Manuf. Technol. 34, 300–306 (2007)

    Google Scholar 

  41. R. Hunter, Zeta Potential in Colloid Science: Principle and Applications (Academic Press, Waltham, 1981)

    Google Scholar 

  42. L. Vandsburger, Synthesis and Covalent Surface Modification of Carbon Nanotubes for Preparation of Stabilized Nanofluid Suspensions, MSc. Thesis, McGill University, Montreal 2009

  43. H. Yu, S. Hermann, S.E. Schulz, T. Gessner, Z. Dong, W.J. Li, Chem. Phys. 408, 11–16 (2012)

    CAS  Google Scholar 

  44. E. Tombácz, D. Bica, A. Hadjú, E. Illés, A. Majzik, L. Vékás, J. Phys. Condens. Matter 20, 204103 (2008)

    Google Scholar 

  45. M.A. Khairul, K. Shah, E. Doroodchi, R. Azizian, B. Moghtaderi, Int. J. Heat Mass Transf. 98, 778–787 (2016)

    CAS  Google Scholar 

  46. J. Huang, X. Wang, Q. Long, X. Wen, Y. Zhou, L. Li, in 2009 Symp. On Photonics and Optoelectronics, Institute of Electrical and Electronics Engineers, Pisctaway Township, 1–4 (2009)

  47. G. Xia, H. Jiang, R. Liu, Y. Zhai, Int. J. Therm. Sci. 84, 118–124 (2014)

    CAS  Google Scholar 

  48. S. Liufu, H. Xiao, Y. Li, J. Colloid Interface Sci. 281, 155–163 (2005)

    CAS  Google Scholar 

  49. J.J. Wang, R.T. Zheng, J.W. Gao, G. Chen, Nano Today 7, 124–136 (2012)

    Google Scholar 

  50. M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioutas, Int. J. Thermophys. 26, 646–664 (2005)

    Google Scholar 

  51. A. Nasiri, M. Shariaty-Niasar, A. Rashidi, A. Amrollahi, R. Khodafarin, Exp. Therm. Fluid Sci. 35, 717–723 (2011)

    CAS  Google Scholar 

  52. N. Parametthanuwat, S. Bhuwakietkumjohn, Y. Rittidech, T. Ding, Int. J. Heat Fluid Flow 56, 80–90 (2015)

    CAS  Google Scholar 

  53. X.Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1–19 (2007)

    Google Scholar 

  54. S. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermochim. Acta 483, 73–77 (2009)

    CAS  Google Scholar 

  55. D. Wu, H. Zhu, L. Wang, L. Liu, Curr. Nanosci. 5, 103–112 (2009)

    CAS  Google Scholar 

  56. X.Q. Wang, A.S. Mujumdar, Braz. J. Chem. Eng. 25, 631–648 (2008)

    Google Scholar 

  57. P. Gunnasegaran, M.Z. Abdullah, N.H. Shuaib, Int. Commun. Heat Mass 47, 82–91 (2013)

    CAS  Google Scholar 

  58. M.A.B. Harun, P. Gunnasegaran, N.A.C. Sidik, J. Adv. Res. Des. 52, 13–27 (2019)

    Google Scholar 

  59. R.B. Ganvir, P.V. Walke, V.M. Kriplani, Renew. Sustain. Energy Rev. 75, 451–460 (2017)

    Google Scholar 

  60. M.M. Tawfik, Renew. Sustain. Energy Rev. 75, 1239–1253 (2017)

    CAS  Google Scholar 

  61. M. Chandrasekar, S. Suresh, A.C. Bose, Exp. Therm. Fluid Sci. 34, 210–216 (2010)

    CAS  Google Scholar 

  62. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Colloids Surf. A 388, 41–48 (2011)

    CAS  Google Scholar 

  63. W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 33, 706–714 (2009)

    CAS  Google Scholar 

  64. F.S. Javadi, S. Sadeghipour, R. Saidur, G. BoroumandJazi, B. Rahmati, M.M. Elias, M.R. Sohel, Int. Commun. Heat Mass Transf. 44, 58–63 (2013)

    CAS  Google Scholar 

  65. T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, Appl. Therm. Eng. 30, 2213–2218 (2010)

    CAS  Google Scholar 

  66. H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George, T. Pradeep, Appl. Phys. Lett. 83, 2931–2933 (2003)

    CAS  Google Scholar 

  67. W. Duangthongsuk, S. Wongwises, Int. J. Heat Mass Transf. 53, 334–344 (2010)

    CAS  Google Scholar 

  68. L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transf. 44, 7–14 (2013)

    Google Scholar 

  69. Y. Vermahmoudi, S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, Eur. J. Mech. B 44, 32–41 (2014)

    Google Scholar 

  70. A.M. Hussein, R.A. Bakar, K. Kadirgama, Case Stud. Therm. Eng. 2, 50–61 (2014)

    Google Scholar 

  71. L.C. Yuan, W.J. Chang, C.T. Chieh, Appl. Energy 88, 4527–4533 (2011)

    Google Scholar 

  72. S.K. Das, N. Putra, W. Roetzel, Int. J. Heat Mass Transf. 46, 851–862 (2003)

    CAS  Google Scholar 

  73. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Int. J. Heat Mass Transf. 50, 2272–2281 (2007)

    CAS  Google Scholar 

  74. G.M.J. Pastoriza, C. Casanova, J.L. Legido, M.M. Piñeiro, Fluid Phase Equilib. 300, 188–196 (2011)

    Google Scholar 

  75. P.K. Namburu, D.P. Kulkarni, A. Dandekar, D.K. Das, Micro. Nano Lett. 2, 67–71 (2007)

    CAS  Google Scholar 

  76. M. Ghanbarpour, E.B. Haghigi, R. Khodabandeh, Exp. Therm. Fluid Sci. 53, 227–235 (2014)

    CAS  Google Scholar 

  77. S.C. Sandesh, S.K. Sahu, J. Nanotechnol. Eng. Med. 5, 1–6 (2014)

    Google Scholar 

  78. C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, Int. J. Therm. Sci. 47, 103–111 (2008)

    CAS  Google Scholar 

  79. S. Halelfadl, T. Maré, P. Estellé, Exp. Therm. Fluid Sci. 53, 104–110 (2014)

    CAS  Google Scholar 

  80. P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Int. J. Therm. Sci. 48, 290–302 (2009)

    CAS  Google Scholar 

  81. M.N. Pantzali, G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Int. J. Heat Fluid Flow 30, 691–699 (2009)

    CAS  Google Scholar 

  82. M.N. Pantzali, A.A. Mouza, S.V. Paras, Chem. Eng. Sci. 64, 3290–3300 (2009)

    CAS  Google Scholar 

  83. Y.J. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, S.P. Jang, Thermochim. Acta 455, 70–74 (2007)

    CAS  Google Scholar 

  84. E.B. Haghighi, N. Nikkam, M. Saleemi, M. Behi, S.A. Mirmohammadi, B. Palm, Meas. Sci. Technol. 24, 105301 (2013)

    Google Scholar 

  85. V. Srinivas, C.V. Moorthy, V. Dedeepya, P.V. Manikanta, V. Satish, Heat Mass Transf. 52, 701–712 (2016)

    CAS  Google Scholar 

  86. W. Yu, H. Xie, J. Nanomater. 2012, 1–17 (2012)

    Google Scholar 

  87. E. Tang, G. Cheng, X. Ma, X. Pang, Q. Zhao, Appl. Surf. Sci. 252, 5227–5232 (2006)

    CAS  Google Scholar 

  88. L. Yang, Y. Hu, Nanoscale Res. Lett. 12, 446 (2017)

    Google Scholar 

  89. C. Qi, C. Li, G. Wang, Nanoscale Res. Lett. 12, 516 (2017)

    Google Scholar 

  90. A.R. Sajadi, M.H. Kazemi, Int. Commun. Heat Mass 38, 1474–1478 (2011)

    CAS  Google Scholar 

  91. S. Fotowat, S. Askar, M. Ismail, A. Fartaj, Sustain. Energy Technol. 24, 39–44 (2017)

    Google Scholar 

  92. R. Bubbico, G.P. Celata, F. D’Annibale, B. Mazzarotta, C. Menale, Chem. Eng. Res. Des. 104, 605–614 (2015)

    CAS  Google Scholar 

  93. W. Rashmi, A.F. Ismail, M. Khalid, A. Anuar, T. Yusaf, J. Mater. Sci. 49, 4544–4551 (2014)

    CAS  Google Scholar 

  94. J. Sarkar, Renew. Sustain. Energy Rev. 15, 3271–3277 (2011)

    CAS  Google Scholar 

  95. V.Y. Rudyak, A.V. Minakov, Eur. Phys. J. E 41, 15 (2018)

    Google Scholar 

  96. V.Y. Rudyak, A.A. Belkin, V.V. Egorov, Tech. Phys. 54, 1102 (2009)

    CAS  Google Scholar 

  97. K. Kleinstreuer, F. Yu, Nanoscale Res. Lett. 6, 1 (2011)

    CAS  Google Scholar 

  98. V.Y. Rudyak, S.L. Krasnolutskii, Tech. Phys. 60, 798 (2015)

    CAS  Google Scholar 

  99. R. Dharmalingama, K.K. Sivagnanaprabhu, B.S. Kumar, R. Thirumalai, Procedia Eng. 97, 1434–1441 (2014)

    Google Scholar 

  100. P. Gunnasegaran, M.Z. Abdullah, M.Z. Yusoff, Procedia Mater. Sci. 5, 137–146 (2014)

    CAS  Google Scholar 

  101. N. Putra, R. Saleh, W.N. Septiadi, A. Okta, Z. Hamid, Int. J. Therm. Sci. 76, 128–136 (2014)

    CAS  Google Scholar 

  102. M. Moraveji, S. Keshavarz, Razvarz. Int. Commun. Heat Mass 39, 1444–1448 (2012)

    Google Scholar 

  103. E.N. Stephen, L.G. Asirvatham, R. Kandasamy, B. Solomon, G.S. Kondru, J. Therm. Anal. Calorim. 136, 211–222 (2019)

    CAS  Google Scholar 

  104. N. Putra, W.N. Septiadi, R. Saleh, R.A. Koestoer, S.P. Prakoso, Adv. Mater. Res. 875, 356–361 (2014)

    Google Scholar 

  105. X.W. Wang, Z.P. Wan, Y. Tang, Heat Mass Transf. 49, 1001–1007 (2013)

    CAS  Google Scholar 

  106. P. Gunnasegaran, M.Z. Abdullah, M.Z. Yusoff, Case Stud. Therm. Eng. 6, 238–250 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Ministry of Education Malaysia through Fundamental Research Grant Scheme (FRGS; Grant No. 203.PAERO.6071399) and Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hussin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidina, D.S., Abdullah, M.Z. & Hussin, M. Metal oxide nanofluids in electronic cooling: a review. J Mater Sci: Mater Electron 31, 4381–4398 (2020). https://doi.org/10.1007/s10854-020-03020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03020-7

Navigation