Skip to main content
Log in

Existence of boundary layer nanofluid flow through a divergent channel in porous medium with mass suction/injection

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The steady two-dimensional, laminar, viscous, incompressible boundary layer flow of Cu/Ag-H2O nanofluid in a diverging channel formed by two non-parallel walls in a Darcian porous medium is numerically studied in the presence of mass suction/injection of equal magnitude on both the walls. Here, divergent flow is generated by a line source of fluid volume at the intersection of channel walls. Using similarity transformations, the non-linear governing PDEs are transformed into self-similar coupled non-linear ODEs and they are solved numerically with the help of MATLAB-built solver “bvp4c”. The conditions for the existence of boundary layer flow structure for nanofluid through divergent channel in porous medium are obtained. The analysis reveals that when the permeability parameter \(K\) and nanofluid-volume-fraction-related parameter \(\phi_{1}\) are chosen in a specific manner such that they satisfy the condition \(K > 2\phi_{1}\) then boundary layer flow exists, preventing separation for any mass suction/injection or even in the absence of mass suction/injection. A similar velocity field rises with permeability parameter, which exhibits opposite behavior with nanoparticle volume fraction. Also temperature increases with nanoparticle volume fraction, permeability parameter, and Eckert number, and decreases with power-law exponent (related to variable wall temperature). Skin-friction coefficient and heat transfer rate for Cu-water nanofluid are stronger when compared with Ag-water nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Choi S U S 1995 Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer D A and Wang H P (Eds.) Developments and Applications of Non-Newtonian Flows. New York: ASME, vol. 66, pp. 99–105

  2. Sheikholeslami M, Ganji D D, Ashorynejad H R and Rokni H B 2012 Analytical investigation of Jeffery-Hamel with high magnetic field and nanoparticle by Adomain decomposition method; Appl. Math. Mech. 33(1) 25–36

    Article  MathSciNet  Google Scholar 

  3. Usman M, Haq R U, Hamid M and Wang W 2018 Least square study of heat transfer of water-based Cu and Ag nanoparticles along a converging/diverging channel; J. Mol. Liq. 249 856–867

    Article  Google Scholar 

  4. Biswal U and Chakraverty S 2020 Investigation of Jeffery-Hamel flow for nanofluid in the presence of magnetic field by a new approach in the optimal homotopy analysis method; J. Appl. Comput. Mech.. https://doi.org/10.22055/jacm.2020.31909.1937

    Article  Google Scholar 

  5. Azimi M and Riazi R 2016 MHD copper-water nanofluid flow and heat transfer through convergent–divergent channel; J. Mech. Sci. Technol. 30(10) 4679–4686

    Article  Google Scholar 

  6. Akinshilo A T, Ilegbusi A, Ali H M and Surajo A J 2020 Heat transfer analysis of nanofluid flow with porous medium through Jeffery-Hamel diverging/converging channel; J. Appl. Comput. Mech. 6(3) 433–444

    Google Scholar 

  7. Alsabery A I, Chamkha A J, Saleh H and Hashim I 2017 Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium; Sci. Rep. 7 2357

    Article  Google Scholar 

  8. Jeffery J B 1915 The two-dimensional steady motion of a viscous fluid; Philos. Mag. 6(29) 455–465

    Article  Google Scholar 

  9. Hamel G 1916 Spiralförmige Bewegung zäher Flüssigkeiten; Jahresber. d. Dt. Mathematiker-Vereinigung 25 34

    MATH  Google Scholar 

  10. Pohlhausen V E 1921 Berechnung der Eigenschwingungen statiisch besiimmter Fachwerke; Z. Angew. Math. Mech. 1(1) 28–42

    Article  Google Scholar 

  11. Millsaps K and Pohlhausen K 1953 Thermal distributions in Jeffery-Hamel flows between non-parallel plane walls; J. Aeronaut. Sci. 20 187

    Article  MathSciNet  Google Scholar 

  12. Harrison W J 1919 The pressure in a viscous liquid moving through channel with diverging boundaries; Proc. Cambridge Philos. Soc. 19 307–312

    MATH  Google Scholar 

  13. Tollmien W 1921 Gnenzschichtheoric Handbuch der Experimental Physik; Akadeneisahe Verlagsgesellschaft 4(1) 241

    Google Scholar 

  14. Noether F 1931 Handbuch der Physikalischen und Technischen Mechanik. Leipzig: J. A. Barch, vol. 5, p. 733

  15. Dean W R 1934 Note on the divergent flow of fluid; Philos. Mag. 7(18) 759–777

    Article  Google Scholar 

  16. Bhattacharyya K and Layek G C 2011 MHD boundary layer flow of dilatant fluid in a divergent channel with suction or blowing. Chin. Phys. Lett. 28(8): 084705.

  17. Dogonchi A S and Ganji D D 2016 Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation; J. Mol. Liq. 224 592–603

    Article  Google Scholar 

  18. Mohyud-Din S T, Khan U, Ahmed N and Bin-Mohsin B 2017 Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model; Neural Comput. Appl. 28 4079–4092

    Article  Google Scholar 

  19. Rana P, Shukla N, Gupta Y and Pop I 2019 Analytical prediction of multiple solutions for MHD Jeffery-Hamel flow and heat transfer utilizing KKL nanofluid model; Phys. Lett. A 383(2–3) 176–185

    Article  MathSciNet  Google Scholar 

  20. Kumar K G, Rahimi-Gorji M, Reddy M G, Chamkha A J and Alarifi I M 2020 Enhancement of heat transfer in a convergent/divergent channel by using carbon nanotubes in the presence of a Darcy-Forchheimer medium; Microsyst. Technol. 26 323–332

    Article  Google Scholar 

  21. Jungclaus G 1960 Two-dimensional boundary layers and jets in magneto-fluid dynamics; Rev. Modern Phys. 32(4) 823–827

    Article  Google Scholar 

  22. Layek G C, Kryzhevich S G, Gupta A S and Reza M 2013 Steady magnetohydrodynamic flow in a diverging channel with suction or blowing; Z. Angew. Math. Mech. 64 123–143

    MathSciNet  MATH  Google Scholar 

  23. Gerdroodbary M B, Takami M R and Ganji D D 2015 Investigation of thermal radiation on traditional Jeffery-Hamel flow to stretchable convergent/divergent channels; Case Studies Therm. Eng. 6 28–39

    Article  Google Scholar 

  24. Adnan Asadullah M, Khan U, Ahmed N and Mohyud-Din S T 2016 Analytical and numerical investigation of thermal radiation effects on flow of viscous incompressible fluid with stretchable convergent/divergent channels; J. Mol. Liq. 224 768–775

    Article  Google Scholar 

  25. Khan U, Adnan Ahmed N and Mohyud-Din S T 2017 Soret and Dufour effects on Jeffery-Hamel flow of second-grade fluid between convergent/divergent channel with stretchable walls; Results Phys. 7 361–372

    Article  Google Scholar 

  26. Nasrin R, Alim M A and Chamkha A J 2013 Effect of heating wall position on forced convection along two-sided open enclosure with porous medium utilizing nanofluid; Int. J. Energy Technol. 5(9) 1–13

    Google Scholar 

  27. Magyari E, Rees D A S and Keller B 2005 Effect of viscous dissipation on the flow in fluid saturated porous media. In: Vafai K (Ed.) Handbook of Porous Media, 2nd ed. CRC Press, pp. 373–406

  28. Jafar A B, Shafie S and Ullah I 2020 MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium. Heliyon 6: e04201

  29. Landau L and Lifshitz E M 1959 Fluid Mechanics; Pergamon Press, NY

    Google Scholar 

  30. Holstein H 1943 Ahnliche laminare Reibungsschichten an durchlässigen Wänden.ZWB-VM, p. 3050

  31. Gersten K and Körner H 1968 Wärmeübergang unter Berücksichtigung der Reibungswärme bei laminaren Keilströmungen mit veränderlicher Temperatur und Normalgeschwindigkeit entlang der Wand; Int. J. Heat Mass Transf. 11(4) 655–673

    Article  Google Scholar 

  32. Schlichting H and Gersten K 2000 Boundary layer theory, 8th; Revised Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

The research of A K Verma is supported by the Council of Scientific and Industrial Research, New Delhi, Ministry of Human Resources Development of India Grant [09/013 (0724)/2017-EMR-I] and the work of A K Gautam is funded by University Grants Commission, New Delhi, Ministry of Human Resources Development, Government of India Grant [1220/(CSIR-UGC NET DEC. 2016)]. The authors are thankful to the anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Bhattacharyya.

Abbreviations

Abbreviations

\(A_{1}\) :

Nanoparticle parameter

\(C_{f}\) :

Skin-friction coefficient

Ec :

Eckert number

\(f\) :

Dimensionless velocity

\(k\) :

Variable permeability

\(k_{0}\) :

A constant

\(K\) :

Permeability parameter

\(L\) :

Characteristic length

\(n\) :

Power-law exponent

\(Nu_{x}\) :

Local Nusselt number

p :

Pressure

\(\Pr\) :

Prandtl number

\(Q\) :

Volume flow rate

\(q_{w}\) :

Wall heat flux

\({\text{Re}}_{x}\) :

Local Reynolds number

\(S\) :

Suction/injection parameter

\(T\) :

Temperature

\(T_{0}\) :

Constant depending upon thermal properties

\(T_{w}\) :

Temperature at the surface

\(T_{\infty }\) :

Ambient temperature

\(u\),\(v\):

Velocity components along, respectively, x- and y-axes

\(U\) :

Free-stream velocity

\(U_{0}\) :

Characteristic velocity

\(v_{w}\) :

Suction/injection velocity

x, y:

Cartesian coordinate measured along the surface and normal to it, respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A.K., Gautam, A.K., Bhattacharyya, K. et al. Existence of boundary layer nanofluid flow through a divergent channel in porous medium with mass suction/injection. Sādhanā 46, 98 (2021). https://doi.org/10.1007/s12046-021-01588-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-021-01588-2

Keywords

Navigation