Skip to main content
Log in

A review on synthesis, challenges as well as future prospects of graphene quantum dot (GQD)

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Specific characteristics of dimensionally constrained nanoparticles are used effectively to enhance a wide range of applications. Engineers can exploit the phenomenon and associated band gap to open its applications by incorporating optoelectrical features in different fields. When it comes to materials, carbonaceous nanomaterials like graphene have recently received a lot of interest among researchers. The class of carbonaceous materials is particularly interesting because of their distinctive mechanical, chemical, optical and electrical properties. Graphene quantum dots (GQDs) are the newest form of carbonaceous non-materials. GQDs may be modified and improved by changing the graphene layer count, doping and functional attachments creating composites or using groups. Apart from the band structure, GQDs have a variety of other advantageous functional characteristics for different applications. Tuneable fluorescence, high quantum efficiency\({/}\)quantum confinement, increased chemical stability, edge effects, biocompatibility, low toxicity, photostability and water solubility are a few characteristics of GQDs which are desirable for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available upon reasonable request.

References

  1. B K Sharma, Emerg. Mater. Res. 9(3), 564 (2020)

    Google Scholar 

  2. P S Rawat, R C Srivastava, G Dixit and K Asokan, Vacuum 182, 109700 (2020)

    Article  ADS  Google Scholar 

  3. R Dhyani, R C Srivastava and G Dixit, J. Electr. Mater. 51(10), 5492 (2022)

    Article  ADS  Google Scholar 

  4. N Ganguli and K S Krishnan, Proc. R. Soc. London Ser. A. Math. Phys. Sci. 177(969), 168 (1941)

    ADS  Google Scholar 

  5. M Bawin, Phy. Rev. D 24(12), 3174 (1981)

    Article  ADS  Google Scholar 

  6. R Saito, M Fujita, G Dresselhaus and U M Dresselhaus, Appl. Phys. Lett. 60(18), 2204 (1992)

    Article  ADS  Google Scholar 

  7. O I Micic, C J Curtis, K M Jones, J R Sprague and A J Nozik, J. Phys. Chem. 98(19), 4966 (1994)

    Article  Google Scholar 

  8. P Lambin, L Philippe, J C Charlier and J P Michenaud, Comput. Mater. Sci. 2(2), 350 (1994)

    Article  Google Scholar 

  9. S Ahirwar, S Mallick and D Bahadur, ACS Omega 2, 8343 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  10. C H Kiang, W A Goddard III, R Beyers and D S Bethune, Carbon 33(7), 903 (1995)

    Article  Google Scholar 

  11. H Shi, J Barker, M Y Saidi and R Koksbang, J. Electrochem. Soc. 143(11), 3466 (1996)

    Article  ADS  Google Scholar 

  12. R E Smalley, Rev. Mod. Phys. 69(3), 723 (1997)

    Article  ADS  Google Scholar 

  13. J Liu, R Li and B Yang, ACS Cent. Sci. 6, 2179 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  14. C J Park, Y H Kim and K J Chang, Phys. Rev. B 60(15), 10656 (1999)

    Article  ADS  Google Scholar 

  15. X Peng, L Manna, W Yang, J Wickham, E Scher, A Kadavanich and A P Alivisatos, Nature 404(6773), 59 (2000)

    Article  PubMed  ADS  Google Scholar 

  16. D P Singh, A K Misra, K K Pandey, B Pal, N Kumar, D Singh, K Kondratenko, B Duponchel, P Genevray, R Douali, J. Mol. Liq. 302, 112537 (2020)

    Article  Google Scholar 

  17. Q Li, S Zhang, L Dai and L S Li, J. Amer. Chem. Soc. 134(46), 18932 (2012)

    Article  PubMed  Google Scholar 

  18. K Wijayaratne, T M A A B Thennakoon and T M W J Bandara, Ceylon J. Sci. 51(3), 195 (2022)

    Article  Google Scholar 

  19. X Li, M Rui, J Song, Z Shen and H Zeng, Adv. Fun. Mater. 25(31), 4929 (2015)

    Article  Google Scholar 

  20. S Bak, D Kim and H Lee, Curr. Appl. Phys. 16(9), 1192 (2016)

    Article  ADS  Google Scholar 

  21. W Chen, G Lv, W Hu, D Li, S Chen and Z Dai, Nanotech. Rev. 7(2), 157 (2018)

    Article  Google Scholar 

  22. R Liu, D Wu, X Feng and K Müllen, J. Am. Chem. Soc. 133(39), 15221 (2011)

    Article  PubMed  Google Scholar 

  23. L Kittiratanawasin and S Hannongbua, Integr. Ferroelectron. 175(1), 211 (2016)

    Article  ADS  Google Scholar 

  24. S H Choi, J. Phys. D: Appl. Phys. 50(10), 103002 (2017)

    Article  ADS  Google Scholar 

  25. B D Mansuriya and Z Altintas, Sensors 20(4), 1072 (2020)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  26. M Zacharias and F Giustino, Phys. Rev. Res. 2(1), 013357 (2020)

    Article  Google Scholar 

  27. M Zacharias and P C Kelires, J. Phys. Chem. Lett. 12(40), 9940 (2021)

    Article  PubMed  Google Scholar 

  28. L Tang, R Ji, X Li, K S Teng and S P Lau, Part. Part. Syst. Charact. 30(6), 523 (2013)

    Article  Google Scholar 

  29. S K Das, C M Luk, W E Martin, L Tang, D Y Kim, S P Lau and C I Richards, J. Phys. Chem. C 31, 17988 (2015)

    Article  Google Scholar 

  30. D Jianhui, L Qiujun, M Naxiu, L Haitao, L Meiling, X Mancai, T Liang, X Qingji, Z Youyu and Y Shouzhuo, Chem. A Euro. J. 20(17), 4993 (2014)

    Article  Google Scholar 

  31. S Wang, I S Cole, D Zhao and Q Li, Nanoscale 8(14), 7449 (2016)

    Article  PubMed  ADS  Google Scholar 

  32. Z Zhang, A Fraser, S Ye, G Merle and J Barralet, Nano Futures 3(4), 042003 (2019)

    Article  ADS  Google Scholar 

  33. P Dengyu, G Lei, Z Jingchun, X Chen, X Qi, H He, L Jinghui, Z Zongwen, Y Weijun, C Zhiwen, L Zhen and W Minghong, J. Mater. Chem. 22(8), 3314 (2012)

    Article  Google Scholar 

  34. T M W J Bandara, T M A A B Thennakoon, G G D M G Gamachchi, L R A K Bandara, B M K Pemasiri and U Dahanayake, Mater. Chem. Phys. 289, 126450 (2022)

    Article  Google Scholar 

  35. W Kwon, G Lee, S Do, T Joo and S W Rhee, Small 10(3), 506 (2014)

    Article  PubMed  Google Scholar 

  36. B D Mansuriya and Z Altintas, Nanomaterials 11(10), 2525 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  37. F A Permatasari, A H Aimon, F Iskandar, T Ogiand and K Okuyama, Sci. Rep. 6(1), 1 (2016)

    Article  Google Scholar 

  38. L Tang, R Ji, X Cao, J Lin, H Jiang, X Li, M J Meziani, A H Barbara, X Wang, H Wang, G L Pengju, H Yang, M E Kose, B Chen, L Monica Veca and S P Lau, ACS Nano 6(6), 5102 (2012)

    Article  PubMed  Google Scholar 

  39. X Hou, Y Li and C Zhao, Austr. J. Chem. 69(3), 357 (2016)

    Article  Google Scholar 

  40. L I Nasibulina, T S Koltsova, T Joentakanen, A G Nasibulin, O V Tolochko, J E Malm, M J Karppinen and E I Kauppinen, Carbon 48(15), 4559 (2010)

    Article  Google Scholar 

  41. Z S Wu, W C Ren, L B Gao, J P Zhao, Z P Chen, B L Liu, D M Tang, B Yu, C B Jiang and H M Cheng, ACS Nano. 3, 411 (2009)

    Article  PubMed  Google Scholar 

  42. M Dutta, S Sarkar, T Ghosh and D Basak, J. Phys. Chem. C 116(38), 20127 (2012)

    Article  Google Scholar 

  43. W H Danial, M Abdullah, M A A Bakar, M S Yunos, A R Ibrahim, A Iqbal and N N Adnan, Opt. Mater. 132, 112853 (2022)

    Article  Google Scholar 

  44. S Mao, K Yu, S Cui, Z Bo, G Lu and J Chen, Nanoscale 3(7), 2849 (2011)

    Article  PubMed  ADS  Google Scholar 

  45. S Pei and H M Cheng, Carbon 50(9), 3210 (2012)

    Article  Google Scholar 

  46. B Lesiak, G Trykowski, J Tóth, S Biniak, L Kövér, N Rangam, L Stobinski and A Malolepszy, J. Mater. Sci. 56(5), 3738 (2021)

    Article  ADS  Google Scholar 

  47. J R Lomeda, C D Doyle, D V Kosynkin, W F Hwang and J M Tour, J. Am. Chem. Soc. 130(48), 16201 (2008)

    Article  PubMed  Google Scholar 

  48. M A Cotta, ACS Appl. Nano Mater. 3(6), 4920 (2020)

    Google Scholar 

  49. S Zhu, J Zhang, C Qiao, S Tang, Y Li, W Yuan, B Li, L Tian, F Li, R Hu, H Gao, H Wei, H Zhang, H Sun and B Yang, Chem. Commun. 47(24), 6858 (2011)

    Article  Google Scholar 

  50. R Tian, S Zhong, J Wu, W Jiang, Y Shen and T Wang, Opt. Mater. 60, 204 (2016)

    Article  ADS  Google Scholar 

  51. J Lu, P S E Yeo, C K Gan, P Wuand K P Loh, Nature Nanotechnol. 6(4), 247 (2011)

    Article  PubMed  ADS  Google Scholar 

  52. M Hassan, K R Reddy, E Haque, A I Minett and V G Gomes, J. Coll. Int. Sci. 410, 43 (2013)

    Article  ADS  Google Scholar 

  53. L Zdrazil, R Zahradnicek, R Mohan, P Sedlacek, L Nejdl, P J Schmiedova, M Horak, M Weiter, O Zmeskal and J Hubalek, J. Lumin. 204, 203 (2018)

    Article  Google Scholar 

  54. L Banszerus, A Rothstein, T Fabian, S Moller, E Icking, S Trellenkamp, F Lentz, D Neumaier, K Watanabe, T Taniguchi, F Libisch, C Volk and C Stampfer, Nano Lett. 20(10), 7709 (2020)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  55. H M N Wickramasinghe, K Wijayaratne and T M W J Bandara, Sri Lankan J. Phys. 23(1), 36 (2022)

    Article  ADS  Google Scholar 

  56. N Kumar, S Chaudhary, P Singh, K B Thapa and D Kumar, J. Mol. Liq. 318, 114254 (2020)

    Article  Google Scholar 

  57. L A Ponomarenko, F Schedin, M I Katsnelson, R Yang, E W Hill, K S Novoselov, A K Geim, Science 320, 5874 (2008)

  58. H Wang, G L Pengju, H Yang, M E Kose, B Chen, L M Veca and S P Lau, ACS Nano 6(6), 5102 (2012)

    Article  Google Scholar 

  59. F Lili, Z Miao, L Xiao, Z Rujing, W Kunlin, W Inquan, Z Minlin, W Dehai and Z Hongwei, Part. Part. Syst. Character. 30(9), 764 (2013)

    Article  Google Scholar 

  60. M Tsai, W Tu, L Tang, T Wei, W Wei, S Lau, L Chen and J He, Nano Lett. 1, 309 (2015)

    Google Scholar 

  61. M Veca and S P Lau, ACS Nano 6(6), 5102 (2012)

    Article  Google Scholar 

  62. S Y Lim, W Shen and Z Gao, Chem. Soc. Rev. 44(1), 362 (2015)

    Article  PubMed  Google Scholar 

  63. Y P Sun, B Zhou, Y Lin, W Wang, K S Fernando, P Pathak, M J Meziani, A Barbara, H X Wang, H Wang, G L Pengju, H Yang, M E Kose, L B Chen, M Vecaand and S Y Xie, J. Am. Chem. Soc. 128(24), 7756 (2006)

    Article  PubMed  Google Scholar 

  64. Z Ereš and S Hrabar, Automatika 59(3–4), 254 (2018)

    Article  Google Scholar 

  65. M J Molaei, Talanta 196, 456 (2019)

    Article  PubMed  Google Scholar 

  66. A P V K Saroja, M S Garapati, R Shyiamala Devi, M Kamaraj and S Ramaprabhu, Appl. Sur. Sci. 504, 144430 (2020)

    Article  Google Scholar 

  67. C Zhu, S Yang, G Wang, R Mo, P He, J Sun, Z Di, Z Yuan, J Ding, G Ding and G Xie, J. Mater. Chem. C 3(34), 8810 (2015)

    Article  Google Scholar 

  68. F A Permatasari, A H Aimon, F Iskandar, T Ogi and K Okuyama, Sci. Rep. 6(1), 1 (2016)

    Article  Google Scholar 

  69. N F A M Noor, M A S Badri, M M Salleh and A A Umar, Opt. Mater. 83, 306 (2018)

    Article  ADS  Google Scholar 

  70. X Ding, J. Mater. Chem. C 2(19), 3717 (2014)

    Article  Google Scholar 

  71. S Ahirwar, S Mallick and D Bahadur, ACS Omega 2(11), 8343 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  72. X Zhai, P Zhang, C Liu, T Bai, W Li, L Dai and W Liu, Chem. Commun. 48(64), 7955 (2012)

    Article  Google Scholar 

  73. H Zhu, X Wang, Y Li, Z Wang, F Yang and X Yang, Chem. Commun. (34), 5118 (2009)

    Article  Google Scholar 

  74. S Maiti, S Kundu, C N Roy, T K Das and A Saha, Langmuir 33(51), 14634 (2017)

    Article  PubMed  Google Scholar 

  75. N Kumar, S Chaudhary, P Upadhyay, A K Dwivedi and D Kumar, Pramana – J. Phys. 94(106), 1 (2020)

    Google Scholar 

  76. X Wang, G Sun, N Li and P Chen, Chem. Soc. Rev. 45, 2239 (2016)

    Article  PubMed  Google Scholar 

  77. A R Urade, I Lahiri and K S Suresh, JOM 75, 614 (2023)

    Article  PubMed  ADS  Google Scholar 

  78. L Lu, Y Zhu, C Shi and Y T Pei, Carbon 109, 373 (2016)

    Article  Google Scholar 

  79. Y W Shih, G W Tseng, C Y Hsieh, Y Y Li and A Sakoda, Acta Mater. 78, 314 (2014)

    Article  ADS  Google Scholar 

  80. D Jiang, D Ni, F Liu, L Zhang, L Liu and X Pu, Clin. Chim. Acta 454, 94 (2016)

    Article  PubMed  Google Scholar 

  81. Y L Su, T W Yu, W H Chiang, H C Chiu, C H Chang, C S Chiang and S H Hu, Adv. Funct. Mater. 27(23), 1700056 (2017)

    Article  Google Scholar 

  82. P Y Lo, G Y Lee, J H Zheng, J H Huang, E C Cho and K C Lee, ACS Appl. Biol. Mater. 3(9), 5948 (2020)

    Google Scholar 

  83. D Zhang, L Wen, R Huang, H Wang, X Hu and D Xing, Biomaterials 153, 14 (2018)

    Article  PubMed  Google Scholar 

  84. Y Chong, C Ge, G Fang, X Tian, X Ma, T Wen and J J Yin, ACS Nano 10(9), 8690 (2016)

    Article  PubMed  Google Scholar 

  85. X Yao, X Niu, K Ma, P Huang, J Grothe, S Kaskel and Y Zhu, Small 13(2), 1602225 (2017)

    Article  Google Scholar 

  86. A Tayyebi, O Akhavan, B K Lee and M Outokesh, Carbon 130, 267 (2018)

    Article  Google Scholar 

  87. H Liu, C Li, Y Qian, L Hu, J Fang, W Tong and H Wang, Biomaterials 232, 119700 (2020)

    Article  PubMed  Google Scholar 

  88. W S Kuo, H H Chen, S Y Chen, C Y Chang, P C Chen, Y I Hou and J Y Wang, Biomaterials 120, 185 (2017)

    Article  PubMed  Google Scholar 

  89. C Tshangana, M Chabalala, A Muleja, E Nxumalo and B Mamba, J. Environ. Chem. Eng. 8(4), 103930 (2020)

    Article  Google Scholar 

  90. K Kholikov, S Ilhom, M Sajjad, M E Smith, J D Monroe, O San and A O Er, Photodiagn. Photodyn. Therm. 24, 7 (2018)

    Article  Google Scholar 

  91. C Chen, H Qiao, S Lin, C Man Luk, Y Liu, Z Xu and Q Bao, Sci. Rep. 5(1), 1 (2015)

    Google Scholar 

  92. H Wu, J Ding, D Yang, J Li, Y Shi and Y Zhou, Ceram. Int. 46(11), 17800 (2020)

    Article  Google Scholar 

  93. P Tian, L Tang, K S Teng and S P Lau, Mater. Today Chem. 10, 221 (2018)

    Article  Google Scholar 

  94. Y X Chen, D Lu, G G Wang, J Huangfu, Q B Wu, X F Wang and J Han, ACS Sustainable Chem. Eng. 8(17), 6657 (2020)

    Article  Google Scholar 

  95. W Li, M Li, Y Liu, D Pan, Z Li, L Wang and M Wu, ACS Appl. Nano Mater. 1(4), 1623 (2018)

    Google Scholar 

  96. Y Lei, C Yang, J Hou, F Wang, S Min, X Ma and K W Huang, Appl. Catal. B 216, 59 (2017)

    Article  Google Scholar 

  97. P Gao, K Ding, Y Wang, K Ruan, S Diao, Q Zhang and J Jie, J. Phys. Chem. C 118, 5164 (2014)

    Article  Google Scholar 

  98. M L Tsai, W R Wei, L Tang, H C Chang, S H Tai, P K Yang and J He, ACS Nano 10(1), 815 (2016)

    Article  PubMed  Google Scholar 

  99. T Majumder and S P Mondal, Bull. Mater. Sci. 42, 1 (2019)

    Article  Google Scholar 

  100. W Zhang, N Luo, S Huang, N L Wu and M Wei, ACS Appl. Energy Mater. 2(5), 3791 (2019)

    Google Scholar 

  101. L Kong, X Zhou, S Fan, Z Li and Z Gu, Acta Chim. Sin. 74(7), 620 (2016)

    Article  Google Scholar 

  102. B Gizem Güneştekin, H Medetalibeyoglu, N Atar and M Lütfi Yola, Electroanalysis 32(9), 1977 (2020)

    Article  Google Scholar 

  103. M O Danilov, S S Fomanyuk, G I Dovbeshko, O P Gnatyuk, I A Rusetskyi and G Y Kolbasov, J. Electrochem. Soc. 168(4), 044514 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

N Kumar is thankful to the Centre for Development of Advanced Computing (CDAC) for providing computational help for this work. The authors are also thankful to Mr Pawan Singh and Khem B Thapa (BBAU, Lucknow) for the scientific discussion. The authors are very grateful to Dr Anakuthil Anoop, Associate Professor, Department of Chemistry, Indian Institute of Technology Kharagpur (IITK), West Bengal, India, for providing the help of Python aggregation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinder Kumar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Dhyani, R., Rawat, B.S. et al. A review on synthesis, challenges as well as future prospects of graphene quantum dot (GQD). Pramana - J Phys 98, 42 (2024). https://doi.org/10.1007/s12043-023-02690-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02690-2

Keywords

PACS Nos

Navigation