Skip to main content
Log in

Dynamics analysis and fractional-order nonlinearity system via memristor-based Chua oscillator

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This article discusses the utilisation of a Chua oscillator with a memristor to produce chaos with minimal nonlinearity. The memristor, a device that changes its flux or charges over time, has its nonlinear strength altered fractionally to determine the lowest-order memristor nonlinearity for generating chaos. An experimental analog circuit in real-time has been constructed. A linear parameter varying (LPV) approach, incorporating a suitable Lyapunov functional (LK) method, has been introduced to find new sufficient conditions for the robust stability of the resulting closed-loop system through linear matrix inequalities (LMIs). By observing the behaviour of the system without control, it is possible to understand the basic characteristics of chaotic oscillations and how they are affected by changes in the fractional order. These results can then be used as a starting point to study the effectiveness of various control techniques, such as feedback control, in reducing chaos and stabilising the system of this article. The efficiency of the cost-function-based control scheme is evaluated using the simulation results and relevant applications are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D B Strukov, G S Snider, D R Stewart and R S Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  2. R Kozma, R E Pino and G E Pazienza, IEEE Access 4, (2012)

  3. A Adamatzky and L Chua, Memristor networks (Springer Science & Business Media, 2013)

  4. H Xi and R Zhang, Chin. J. Phys. 77, 572 (2022)

    Article  Google Scholar 

  5. P K Sharma, R K Ranjan, F Khateb and M Kumngern, IEEE Access 08, 171397 (2020)

    Article  Google Scholar 

  6. Y Chen, Q Cao, Z Zhu, Z Wang and Z Zhao, IEEE Access 9, 44402 (2021)

    Article  Google Scholar 

  7. L Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  8. R Stanley Williams, How we found the missing memristor, in: Chaos, CNN, memristors and beyond (World Scientific, 2013) pp. 483–489

  9. R Tetzlaff, Memristors and memristive systems (Springer, 2013)

  10. C Li, M Wei and J Yu, Int. Conference on Communications, Circuits and Systems (2009) p. 944

  11. B Muthuswamy, Int. J. Bifurc. Chaos 20, 1335 (2010)

    Article  Google Scholar 

  12. V T Pham, S Jafari, S Vaidyanathan, C Volos and X Wang, Sci. China Technol. Sci. 59, 358 (2016)

    Article  ADS  Google Scholar 

  13. S Sabarathinam, A Prasad, AIP Conf. Proc. 1942(1), 060025 (2018)

    Google Scholar 

  14. S Sabarathinam and K Thamilmaran, AIP Conf. Proc. 1832(1), 060007 (2017)

    Google Scholar 

  15. I E Ebong and P Mazumder, IEEE Trans. Nanotechnol. 10, 1454 (2011)

    Article  ADS  Google Scholar 

  16. M A Zidan, H A H Fahmy, M M Hussain and K N Salama, Microelectron. J. 44, 176 (2013)

    Article  Google Scholar 

  17. R Jothimurugan, S Sabarathinam, K Suresh and K Thamilmaran, Advances in memristors, memristive devices and systems (Springer, 2017) pp. 343–370

  18. N Gunasekaran, S Srinivasan, G Zhai and Q Yu, IEEE Access 9, 25648 (2021)

    Article  Google Scholar 

  19. V Varshney, S Sabarathinam, K Thamilmaran, M D Shrimali and A Prasad, Nonlinear dynamical systems with self-excited and hidden attractors (Springer, 2021) pp. 327–344

    Google Scholar 

  20. Y Cao, W Jiang and J Wang, Knowl.-Based Syst. 233, 107539 (2021)

  21. I Petráš, Fractional-order systems, in: Fractional-order nonlinear systems (Springer Science & Business Media, 2011) pp. 43–54

  22. J Sabatier, O P Agrawal and J A T Machado, Advances in fractional calculus, in: Theoretical developments and applications in physics and engineering (Springer, 2007) Vol. 4

  23. D Baleanu, J Machado and A CJ Luo, Fractional dynamics and control (Springer Science & Business Media, 2011)

  24. R L Magin, Crit. Rev. Biomed. Eng. 32, 195 (2004)

    Article  Google Scholar 

  25. V T Mai and C H Dinh, J. Syst. Sci. Complex. 32, 1479 (2019)

    Article  MathSciNet  Google Scholar 

  26. W Ahmad, R El-Khazali and A S Elwakil, Electron. Lett. 37, 1110 (2001)

    Article  ADS  Google Scholar 

  27. D-Y Xue and C-N Zhao, IET Control. Theory Appl. 5, 771 (2007)

    Google Scholar 

  28. I Podlubny, IEEE Trans. Autom. Control 44, 208 (1999)

    Article  Google Scholar 

  29. H-B Bao and J Cao, Neural Netw. 63, 1 (2015)

    Article  Google Scholar 

  30. Y Gu, Hu Wang and Y Yu, J. Franklin Inst. 357, 8870 (2020)

    Article  MathSciNet  Google Scholar 

  31. J Palanivel, K Suresh, S Sabarathinam and K Thamilmaran, Chaos Solitons Fractals 95, 33 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  32. I Grigorenko and E Grigorenko, Phys. Rev. Lett. 91, 034101 (2003)

    Article  ADS  Google Scholar 

  33. CA Monje, B M Vinagre, V Feliu and Y Chen, Control Eng. Pract. 16, 798 (2008)

    Article  Google Scholar 

  34. K Xu, L Chen, M Wang, A M Lopes, M JA Tenreiro and H Zhai, Mathematics 8, 326 (2020)

    Article  Google Scholar 

  35. L Chen, T Li, R Wu, A M Lopes, J A T Machado and K Wu, Comput. Appl. 39, 1 (2020)

    Google Scholar 

  36. M V Thuan, T N Binh and D C Huong, Asian J. 22, 696 (2020)

    Google Scholar 

  37. L Chen, R Wu, L Yuan, L Yin, Y Q Chen and S Xu, Optim. Control Appl. Meth. 42, 1102 (2021)

    Google Scholar 

  38. Vc N Phat, M V Thuan and T N Tuan, Vietnam J. Math. 47, 403 (2019)

  39. L Liu, Y Di, Y Shang, Z Fu and B Fan, Circuits Syst. Signal Process. 1 (2021)

  40. D C Huong, Circuits Syst. Signal Process. 40, 4759 (2021)

    Google Scholar 

  41. M V Thuan and D C Huong, Optim. Control Appl. Methods 40, 613 (2019)

    Google Scholar 

  42. H-B Bao and J-D Cao, Neural Netw. 63, 1 (2015)

    Article  Google Scholar 

  43. L Chen, R Wu, J Cao and J-B Liu, Neural Netw. 71, 37 (2015)

    Article  Google Scholar 

  44. G Velmurugan, R Rakkiyappan and J Cao, Neural Netw. 73, 36 (2016)

    Article  Google Scholar 

  45. R Scherer, S L Kalla, Y Tang and J Huang, Comput. Math. Appl. 62, 902 (2011)

    MathSciNet  Google Scholar 

  46. N Heymans and I Podlubny, Rheol. Acta 45, 765 (2006)

    Article  Google Scholar 

  47. Y Luchko and R Gorenflo, Frac. Calc. Appl. Anal. 1, 63 (1998)

    Google Scholar 

  48. W M Ahmad and J C Sprott, Chaos Solitons Fractals 16, 339 (2003)

    Article  ADS  Google Scholar 

  49. BM Vinagre, I Podlubny, A Hernandez and V Feliu, Fract. Calc. Appl. 3, 231 (2000)

    Google Scholar 

  50. Z-M Ge and C-Y Ou, Chaos Solitons Fractals 34, 262 (2007)

    Article  ADS  Google Scholar 

  51. S Sabarathinam and A Prasad, AIP Conf. Proc.1942, 060025 (2018)

    Google Scholar 

  52. I Podlubny, Fractional differential equations – An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Elsevier Academic Press, 1998)

    MATH  Google Scholar 

  53. M A Duarte-Mermoud, N Aguila-Camacho, J A Gallegos and R Castro-Linares, Commun. Nonlinear Sci. Numer. Simul. 22, 650 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  54. Y Wen, X-F Zhou, Z Zhang and S Liu, Nonlinear Dyn. 82, 1015 (2015)

    Article  Google Scholar 

  55. R Vadivel, R Suresh, P Hammachukiattikul, B Unyong and N Gunasekaran, IEEE Access 9, 145133 (2021)

    Article  Google Scholar 

  56. R Anbuvithya, S S Dheepika, R Vadivel, N Gunasekaran and P Hammachukiattikul, IEEE Access 9, 31454 (2021)

    Article  Google Scholar 

  57. R Vadivel, M S Ali and F Alzahrani, Chin. J. Phys. 60, 68 (2019)

    Article  Google Scholar 

  58. M Syed Ali, R Vadivel and K Murugan, Chin. J. Phys. 56, 2448 (2018)

  59. D C Huong, Optimal control applications and methods (Wiley Online Library, 2022)

    Google Scholar 

Download references

Acknowledgements

SS and VP acknowledges the Basic Research Program of the National Research University, Higher School of Economics, Moscow. RV acknowledges the Thailand Science Research and Innovation (TSRI) Grant Fund No. 64A146000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NALLAPPAN Gunasekaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabarathinam, S., Papov, V., Wang, ZP. et al. Dynamics analysis and fractional-order nonlinearity system via memristor-based Chua oscillator. Pramana - J Phys 97, 107 (2023). https://doi.org/10.1007/s12043-023-02590-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02590-5

Keywords

PACS Nos

Navigation