Skip to main content
Log in

The role of correlation time in a stochastic population model with density-dependent harvesting

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, a single-species stochastic population model is considered in the presence of density-dependent proportional harvesting. The stochastic model is considered to include the effects of fluctuation in the predation rate and environmental variability. Coloured cross-correlated Gaussian coloured noises are used to generate stochastic fluctuations. Steady-state probability distribution function and stationary potential are determined using the approximate Fokker–Planck equation. Phenomenological bifurcation analysis and mean first passage time have been computed. The average population density in the outbreak state is calculated using normalised probability distribution of the outbreak state. The species outbreak control strategy has been proposed. The key observations of this study are the negative cross-correlation strength-induced noise enhanced stability (NES) phenomenon and the environmental stochasticity-induced resonant activation (RA) phenomenon. Bistable to monostable phase regime shift is observed to depend on the environmental stochasticity whereas monostable to bistatble phase regime shift is observed to depend on correlation time of the environmental stochasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H Kantz, C Grebogi, A Prasad, Y C Lai and E Sinde, Phys. Rev. E 65, 026209 (2002)

  2. A Gupta, A Sohane, V Kohar, K Murali and S Sinha, Phys. Rev. E 84, 055201(R) (2011)

    Article  ADS  Google Scholar 

  3. M Aravind, S Sinha and P Parmananda, Chaos 31, 061106 (2021)

  4. B Aragie, M Bekele and G Pellicane, Pramana – J. Phys. 96, 59 (2022)

    Google Scholar 

  5. J Ripa, P Lundberg and V Kaitala, Am. Nat. 151, 256 (1998)

    Article  Google Scholar 

  6. M Holmgren, M Scheffer, E Ezcurra, J R Gutierrez and M J M Godefridus, Trends Ecol. Evol. 16, 89 (2001)

    Article  Google Scholar 

  7. D A Vasseur and P Yodzis, Ecology 85, 1146 (2004)

    Article  Google Scholar 

  8. Y Liu, J Liang, S B Jiao, N Xiao and Z Zhang, Pramana – J. Phys. 89, 73 (2017)

    Google Scholar 

  9. L Ning, L Xie and Y Wang, Pramana –J. Phys. 96, 45 (2022)

    Article  ADS  Google Scholar 

  10. P Panja, S Poria and S K Mondal, Int. J. Biomath. 11, 1850059 (2018)

    Article  MathSciNet  Google Scholar 

  11. S Jana, S Guria, U Das, T K Kar and A Ghorai, Nonlinear Dyn. 81, 917 (2015)

    Article  Google Scholar 

  12. T K Kar and A Ghorai, Appl. Math. Comput. 217, 9085 (2011)

    MathSciNet  Google Scholar 

  13. K Chakraborty, S Jana and T K Kar, Nonlinear Dyn. 70, 1805 (2012)

    Article  Google Scholar 

  14. T K Kar and S Misra, Appl. Appl. Math. 5, 4 (2010)

    Google Scholar 

  15. T K Kar, J. Comput. Appl. Math. 185, 19 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. N Bairagi, S Chaudhuri and J Chattopadhyay, Math. Biosci. 217, 134 (2009)

    Article  MathSciNet  Google Scholar 

  17. M Liu and C Bai, J. Math. Biol. 73, 597 (2016)

    Article  MathSciNet  Google Scholar 

  18. L Liu and X Meng, Adv. Differ. Equ. 2017, 18 (2017)

    Article  Google Scholar 

  19. S K Mandal and S Poria, Phys. Scr. 96, 055203 (2021)

  20. D Ludwig, D D Jones and C S Holling, J. Anim. Ecol. 47, 315 (1978)

    Article  Google Scholar 

  21. S K Mandal, D K Jana and S Poria, Phys. Scr. 97, 065006 (2022)

  22. B Sahoo and S Poria, Differ. Equ. Dyn. Syst. 23, 257 (2015)

    Google Scholar 

  23. B Sahoo and S Poria, Appl. Math. Comput. 234, 150 (2014)

    MathSciNet  Google Scholar 

  24. Q Y Wang, M Perc, Z Duan and G Chen, Chaos 19, 023112 (2009)

  25. M Perc, Phys. Rev. E 76, 066203 (2007)

  26. Y Sharma, K C Abbott, P S Dutta and A K Gupta, Theor. Ecol. 8, 163 (2015)

    Article  Google Scholar 

  27. A Maiti and G P Samanta, Int. J. Syst. Sci. 37, 817 (2006)

    Article  Google Scholar 

  28. A Maiti and S Pathak, Nonlin. Anal. Model. Contr. 14, 51 (2009)

    Article  Google Scholar 

  29. S H Strogatz, Nonlinear dynamics and chaos (Leavant Books, Kolkata, India, 2007)

    Google Scholar 

  30. H Risken, The Fokker-Planck equation: Methods of solution and applications (Springer-Verlag, Berlin, 1984)

    Book  MATH  Google Scholar 

  31. T Bose and S Trimper, Phys. Rev. E 79, 051903 (2009)

  32. J Ma, Y Xu, Y Li, R Tian and J Kurths, Chaos 29, 081102 (2019)

  33. X D Zheng, X Q Yang and Y Tao, Plos One 6, e17104 (2011)

  34. Y Jia, S Yu and J Li, Phys. Rev. E 62, 2 (2000)

    Article  Google Scholar 

  35. L Arnold, Random dynamical system (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  36. W Horsthemke and R Lefever, Noise-induced transitions (Springer-Verlag, Berlin, 2006)

    MATH  Google Scholar 

  37. V Dakos, E H van Nes, R Donangelo, H Fort and M Scheffer, Theor. Ecol. 3, 163 (2010)

    Article  Google Scholar 

  38. C W Gardiner, Handbook of stochastic methods (Springer-Verlag, Berlin, 1997)

    MATH  Google Scholar 

  39. C Guarcello, D Valenti, G Augello and B Spagnolo, Acta Phys. Pol. B 44, 997 (2013)

    Article  ADS  Google Scholar 

  40. B Spagnolo, D Valenti, C Guarcello, A Carollo, D P Adorno, S Spezia, N Pizzolato and B D Paola, Chaos Solitons Fractals 81(B), 412 (2015)

  41. M Pal, A K Pal, S Ghosh and I Bose, Phys. Biol. 10, 036010 (2013)

  42. H A Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  43. P Hänggi, P Talkner and M Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  44. C Schmitt, B Dybiec, P Hänggi and C Bechinger, EPL 74, 937 (2006)

    Article  ADS  Google Scholar 

  45. J Zeng, C Zeng, Q Xie, L Guan, X Dong and F Yang, Physica A 462, 1273 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the editor and reviewers for critical comments and suggestions, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Poria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S.K., Poria, S. The role of correlation time in a stochastic population model with density-dependent harvesting. Pramana - J Phys 97, 69 (2023). https://doi.org/10.1007/s12043-023-02549-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02549-6

Keywords

PACS

Navigation