Skip to main content
Log in

Decay of dinuclear systems formed from dubnium

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The radioactivity of the superheavy nuclei \(^{250-275}\)Db is studied and presented using the Coulomb and proximity potentials. The half-lives corresponding to different decay modes such as \(\alpha \), cluster decay (\(^{12}\)C, \(^{14}\)N, \(^{18,20}\)O, \(^{23}\)F, \(^{20}\)Ne, \(^{34}\)S, \(^{28}\)Mg and \(^{40}\)Ca) and spontaneous fission in the superheavy nuclei \(^{250-275}\)Db are studied. The studied half-lives are compared with the available experiments. The decay modes and the branching ratios of isotopes of dubnium are presented. The isotopes of dubnium, \(^{254-263}\)Db, are identified as \(\alpha \) emitters, whereas isotopes such as \(^{250-253}\)Db and \(^{264-275}\)Db are identified as having spontaneous fission. The identified alpha emitting isotopes of dubnium have decay energies from 6 MeV to 10 MeV and half-lives 1 ms to 100 s. The possible projectile–target combinations to synthesise the superheavy nuclei \(^{253-263}\)Db were predicted. The fusion of spherical projectile and target yields larger evaporation residue cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. F P Heßberger et al, Eur. Phys. J. A 12, 57 (2001)

    Article  ADS  Google Scholar 

  2. Y T Oganessian, A G Demin, A S Iljinov, S P Tretyakova, A A Pleve, Y E Penionzhkevich, M P Ivanov and Y P Tretyakov, Nucl. Phys. A 239, 157 (1975)

    Article  ADS  Google Scholar 

  3. G Münzenberg et al, Z. Phys. A 322, 227 (1985)

    Article  ADS  Google Scholar 

  4. C M Folden III, S L Nelson, C E Düllmann, J M Schwantes, R Sudowe, P M Zielinski, K E Gregorich, H Nitsche and D C Hoffman, Phys. Rev. C 73, 014611 (2006)

    Article  ADS  Google Scholar 

  5. S Hofmann, F P Heßberger, V Ninov, P Armbruster, G Münzenberg, C Stodel, A G Popeko, A V Yeremin, S Saro and M Leino, Z. Phys. A 358, 377 (1997)

    Google Scholar 

  6. S Hofmann et al, Z. Phys. A 350, 277 (1995)

    Article  ADS  Google Scholar 

  7. S Hofmann et al, Eur. Phys. J. A 14, 147 (2002)

    Article  ADS  Google Scholar 

  8. K Morita et al, Eur. Phys. J. A 73, 2593 (2004)

    Google Scholar 

  9. Y T Oganessian et al, Phys. Rev. C 70, 064609 (2004)

    Article  ADS  Google Scholar 

  10. Y T Oganessian et al, Phys. Rev. C 62, 041604 (2000)

    Article  ADS  Google Scholar 

  11. Y T Oganessian et al, Phys. Rev. C 69, 041601 (2004)

    Article  Google Scholar 

  12. D N Poenaru, R A Gherghescu, W Greiner, Phys. Rev. C 6, 062503 (2011)

    Google Scholar 

  13. D N Poenaru, R A Gherghescu and W Greiner, J. Phys.: Conf. Ser. 436, 012056 (2013)

    Google Scholar 

  14. B Buck, A C Merchant and S M Perez, Mod. Phys. Lett. A 6, 2453 (1991)

    Article  ADS  Google Scholar 

  15. D Ni and Z Ren, Phys. Rev. C 81, 064318 (2010)

    Article  ADS  Google Scholar 

  16. P R Chowdhury, C Samanta and D N Basu, Phys. Rev. C 77, 044603 (2008)

    Article  ADS  Google Scholar 

  17. C Samanta, P R Chowdhury and D N Basu, Nucl. Phys. A 789, 142 (2007)

    Article  ADS  Google Scholar 

  18. Y Z Wang, J M Dong, B B Peng and H F Zhang, Phys. Rev. C 81, 067301 (2010)

    Article  ADS  Google Scholar 

  19. V Y Denisov and H Ikezoe, Phys. Rev. C 72, 064613 (2005)

    Article  ADS  Google Scholar 

  20. D Ni and Z Ren, Nucl. Phys. A 893, 13 (2012)

    Article  ADS  Google Scholar 

  21. V Y Denisov and A Khudenko, At. Data Nucl. Data Tables 95, 815 (2009)

    Article  ADS  Google Scholar 

  22. J Engel, M Bender, J Dobaczewski, W Nazarewicz and R Surman, Phys. Rev. C 60, 014302 (1999)

    Article  ADS  Google Scholar 

  23. P Möller, J R Nix, W D Wyers and W J Swiatecki, At. Data Nucl. Data Tables 66, 131 (1997)

    Article  ADS  Google Scholar 

  24. P Möller, B Pfeiffer and K Kratz, At. Data Nucl. Data Tables 67, 055802 (2003)

    Google Scholar 

  25. I N Borzov, S Goriely and J M Pearson, Nucl. Phys. A 621, 307 (1997)

    Article  ADS  Google Scholar 

  26. N Bohr and J A Wheeler, Phys. Rev. 56, 426 (1936)

    Article  ADS  Google Scholar 

  27. G N Flerov and K A Petrzhak, Phys. Rev. 58, 275 (1940)

  28. W J Swiatecki, Phys. Rev. 100, 937 (1995)

    Article  ADS  Google Scholar 

  29. V M Strutinsky, Nucl. Phys. A 95, 420 (1967)

    Article  ADS  Google Scholar 

  30. P Möller, D G Madland, A J Sierk and A Iwamoto, Nature 409, 6822 (2001)

    Article  Google Scholar 

  31. A Sobiczewski and K Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007)

    Article  ADS  Google Scholar 

  32. A Sandulescu, D N Poenaru and W Greiner, Sov. J. Part. Nucl. (Engl. Transl.) 11, 6 (1980)

    Google Scholar 

  33. H J Rose and G A Jones, Nature 307, 245 (1984)

    Article  ADS  Google Scholar 

  34. K P Santhosh and T A Jose, Nucl. Phys. A 992, 121626 (2009)

    Article  Google Scholar 

  35. D N Poenaru, M Ivaşcu, A Sandulescu and W Greiner, Phys. Rev. C 32, 572 (1985)

    Article  ADS  Google Scholar 

  36. W Greiner, M Ivascu, D N Poenaru and A Sandulescu, Z. Phys. A 320, 347 (1985)

    Google Scholar 

  37. Y J Shi and W J Swiatecki, Phys. Rev. Lett. 54, 300 (1989)

    Article  ADS  Google Scholar 

  38. B Buck and A C Merchant, J. Phys. G 15, 615 (1989)

    Article  ADS  Google Scholar 

  39. S S Malik and R K Gupta, Phys. Rev. C 39, 1992 (1989)

    Article  ADS  Google Scholar 

  40. S Kumar and R K Gupta, Phys. Rev. C 55, 218 (1997)

    Article  ADS  Google Scholar 

  41. D N Poenaru, Y Nagame, R A Gherghescu and W Greiner, Phys. Rev. C 66, 049902 (2002)

    Article  ADS  Google Scholar 

  42. D N Poenaru, Y Nagame, R A Gherghescu and W Greiner, Phys. Rev. C 65, 054308 (2002)

    Article  ADS  Google Scholar 

  43. M A Hooshyar, I Reichstein and F B Malik, Nuclear fission and cluster radioactivity (Springer Science and Business Media, 2005)

  44. A M Nagaraja, H C Manjunatha, N Sowmya, N Manjunath and S A C Raj, The Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  45. H C Manjunatha and N Sowmya, Nucl. Phys. A 969, 68 (2018)

    Article  ADS  Google Scholar 

  46. N Sowmya, H C Manjunatha, N Dhananjaya and A M Nagaraja, J. Rad. Nucl. Chem. 323, 1347 (2020)

    Article  Google Scholar 

  47. A M Nagaraja, H C Manjunatha, N Sowmya and S C Raj, NISCAIR-CSIR, India (2020)

    Google Scholar 

  48. G R Sridhar, H C Manjunatha, N Sowmya, P S Damodara Gupta and H B Ramalingam, The Eur. Phys. J Plus 135, 1 (2020)

    Google Scholar 

  49. G R Sridhar, H C Manjunatha, N Sowmya, P S D Gupta and H B Ramalingam, Phys. Rev. C 98, 024308 (2018)

    Article  ADS  Google Scholar 

  50. H C Manjunatha and N Sowmya, Int. J. Mod. Phys. E 27, 1850041 (2018)

  51. N Sowmya and H C Manjunatha, Phys. Part. Nucl. Lett. 17, 370 (2020)

    Article  Google Scholar 

  52. N Sowmya and H C Manjunatha, Braz. J. Phys. 49, 874 (2019)

    Article  ADS  Google Scholar 

  53. N Sowmya, H C Manjunatha and P S Damodara Gupta, Int. J. Mod. Phys. E 29, 2050087 (2020)

    Article  ADS  Google Scholar 

  54. N Sowmya and H C Manjunatha, Braz. J. Phys. 50, 317 (2020)

    Article  ADS  Google Scholar 

  55. N Sowmya, H C Manjunatha, P S Damodara Gupta and N Dhananjaya, Braz. J. Phys. 17, 1 (2020)

    Google Scholar 

  56. N Sowmya, H C Manjunatha and N Dhananjaya, Proceedings of the Fourteenth Biennial DAE-BRNS symposium on Nuclear and Radiochemistry: Book of Abstracts (2019)

  57. K N Sridhar, H C Manjunatha and H B Ramalingam, Phys. Rev. C 98, 064605 (2018)

    Article  ADS  Google Scholar 

  58. Reference Input Parameter Library (RIPL-3), https://www-nds.iaea.org/RIPL-3.html

  59. X J Bao, S Q Guo, H F Zhang, Y Z Xing, J M Dong and J Q Li, J. Phys. G: Nucl. Part. Phys. 42, 085101 (2015)

    Article  ADS  Google Scholar 

  60. Z Ren and C Xu, Nucl. Phys. A 759, 64 (2005)

    Article  ADS  Google Scholar 

  61. K P Santhosh, R K Biju and S Sahadevan, Nucl. Phys. A 832, 220 (2010)

    Article  ADS  Google Scholar 

  62. A V Karpov, V I Zagrebaev, Y Martinez Palenzuela, L Felipe Ruiz and W Greiner, Int. J. Mod. Phys. E 21, 1250013 (2012)

    Article  ADS  Google Scholar 

  63. V Metag, R Repnow and P Von Brentano, Nucl. Phys. A 165, 289 (1971)

    Article  ADS  Google Scholar 

  64. V Metag, Nukleonika 20, 7 (1975)

    Google Scholar 

  65. H C Manjunatha, Indian J. Phys. 92, 507 (2018)

    Article  ADS  Google Scholar 

  66. A Leppnen, Alpha decay and decay-tagging studies of heavy elements using the RITU separator (University of Jyväskylä, 2005)

  67. G Münzenberg, S Hofmann, F P Heßberger, W Reisdorf, K H Schmidt, J H R Schneider, P Armbruster, C C Sahm and B Thuma, Z. Phys. A 300, 107 (1981)

    Google Scholar 

  68. M Vostinar et al, Eur. Phys. J. A 55, 1 (2019)

    Article  Google Scholar 

  69. Z Gan et al, Eur. Phys. J. A 10, 21 (2001)

    Article  ADS  Google Scholar 

  70. K Morita et al, J. Phys. Soc. Jpn. 73, 1738 (2004)

    Article  ADS  Google Scholar 

  71. Z G Gan et al, Eur. Phys. J. A 20, 385 (2004)

    Article  ADS  Google Scholar 

  72. K Morita et al, J. Phys. Soc. Jpn. 81, 103201 (2012)

    Article  ADS  Google Scholar 

  73. H Ikezoe, T Ikuta, S Mitsuoka, Y Nagame, I Nishinaka, Y Tsukada, T Ohtsuki, T Kizimaki and J Lu, Jaeri Tandem & VDG Annual Report 1997 (April 1, 1997–March 31, 1998) 98, 47 (1998)

  74. H CManjunatha, K N Sridhar and N Sowmya, Nucl. Phys. A 987, 388 (2019)

    Google Scholar 

  75. H C Manjunatha, L Seenappa and N Sowmya, Can. J. Phys. 99, 16 (2021)

    Article  ADS  Google Scholar 

  76. H C Manjunatha, N Sowmya, N Manjunatha, P S Damodara Gupta, L Seenappa, K N Sridhar, T Ganesh and T Nandi, Phys. Rev. C 102, 064605 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraja, A.M., Manjunatha, H.C., Sowmya, N. et al. Decay of dinuclear systems formed from dubnium. Pramana - J Phys 95, 194 (2021). https://doi.org/10.1007/s12043-021-02228-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02228-4

Keywords

PACS Nos

Navigation