Skip to main content
Log in

Comparative study of discharge characteristics and associated film growth for post-cathode and inverted cylindrical magnetron sputtering

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, an experimental investigation of a DC cylindrical magnetron discharge for argon gas in post-cathode (i.e. direct) and hollow-cathode (i.e. inverted) configurations was carried out. The discharge properties at different externally applied magnetic fields and operating pressures were measured and compared for both the configurations. The discharge current (I)–voltage (V) characteristics obey \({I\propto V^n}\), where the value of n is in the range of 3–8. The discharge current increases linearly with the magnetic field in the post-cathode configuration, whereas it saturates at higher magnetic fields in the case of inverted configuration. Measurement of plasma potential indicated a considerable anode fall in the inverted magnetron configuration, whereas a negligible anode fall and strong cathode fall were observed in the case of post-cathode configuration. The plasma density and electron temperature, measured using a double Langmuir probe, were observed to be higher in the inverted magnetron configuration. The plasma density was found to be maximum at around 3–4 cm away from the respective inner electrode in both the configurations. A clear change in surface morphology of copper thin film was observed in the case of inverted magnetron configuration, which might be due to the extra ionisation near the anode owing to the anode fall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J A Thornton, J. Vac. Sci. Technol. 15, 171 (1978)

    Article  ADS  Google Scholar 

  2. P J Kelly and R D Arnell, Vacuum 56(3), 159 (2000)

    Article  ADS  Google Scholar 

  3. J Hon, J. Phys. D 42(4), 043001 (2009)

    Article  ADS  Google Scholar 

  4. A A Atta, M M El-Nahass, K M Elsabawy, M M Abd El-Raheem, A M Hassanien, A Alhuthali, A Badawi and A Merazga, Pramana – J. Phys. 87: 72 (2016)

    Article  ADS  Google Scholar 

  5. D Hoffman, Thin Solid Films 96, 217 (1982)

    Article  ADS  Google Scholar 

  6. T A Van der Straaten, N F Cramer, I S Falconer and B W James, J. Phys. D 31, 177 (1998)

    Article  ADS  Google Scholar 

  7. T A Van der Straaten, N F Cramer, I S Falconer and B W James, J. Phys. D 31, 191 (1998)

    Article  ADS  Google Scholar 

  8. P Kudrna and E Passoth, Contrib. Plasma Phys. 37, 417 (1997)

    Article  ADS  Google Scholar 

  9. G Y Yeom, J A Thornton and M J Kushner, J. Appl. Phys. 65, 3816 (1989)

    Article  ADS  Google Scholar 

  10. E Passoth, P Kudrna, C Csambal, J F Behnke, M Tichy and V Helbig, J. Phys. D 30, 1763 (1997)

    Article  ADS  Google Scholar 

  11. A R Pal, J Chutia and H Bailung, Phys. Plasmas 11, 4719 (2004)

    Article  ADS  Google Scholar 

  12. J A Thornton, Thin Solid Films 54, 23 (1978)

    Article  ADS  Google Scholar 

  13. J A Thornton, J. Vac. Sci. Technol. 17, 380 (1980)

    Article  Google Scholar 

  14. R Rane, M Bandyopadhyay, M Ranjan and S Mukherjee, Phys. Plasmas 23, 013514 (2016)

    Article  ADS  Google Scholar 

  15. W D Gill and E Kay, Rev. Sci. Instrum. 36(3), 277 (1965)

    Article  ADS  Google Scholar 

  16. Y Golubovskii, I A Porokhova, V P Sushkov, M Holik, P Kudrna and M Tichy, Plasma Sources Sci. Technol. 15, 228 (2006)

    Article  ADS  Google Scholar 

  17. O V Vozniy, D Duday, I Luciu and T Wirtz, Plasma Sources Sci. Technol. 23, 045011 (2014)

    Article  ADS  Google Scholar 

  18. D A Duarte, M Massi, A S da Silva Sobrinho, H S Maciel, K Grigorova and L C Fontana, Eur. Phys. J. Appl. Phys. 49, 13107 (2010)

    Article  Google Scholar 

  19. A Todoran, M Mantel, A Bes, C Vachey and A Lacoste, Plasma Sources Sci. Technol. 23, 065039 (2014)

    Article  ADS  Google Scholar 

  20. M A Makowski and G A Emmert, Rev. Sci. Instrum. 54(7), 830 (1983)

    Article  ADS  Google Scholar 

  21. B Longmier, S Baalrud and N Hershkowitz, Rev. Sci. Instrum. 77, 113504 (2006)

    Article  ADS  Google Scholar 

  22. S Craig and G Harding, J. Vac. Sci. Tecnol. 19(2), 205 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Rane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rane, R., Joshi, A., Akkireddy, S. et al. Comparative study of discharge characteristics and associated film growth for post-cathode and inverted cylindrical magnetron sputtering. Pramana - J Phys 92, 55 (2019). https://doi.org/10.1007/s12043-018-1711-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1711-1

Keywords

PACS Nos

Navigation