Skip to main content
Log in

Plasma Cathode Research in Plasma Physics and Pulsed Power Laboratory

  • Published:
Russian Physics Journal Aims and scope

In this review, several types of plasma electron sources, studied in the Plasma Physics and Pulsed power Laboratory during the last 20 years, are considered. Namely, main parameters, such as plasma density and temperature, expansion velocity and plasma uniformity, life-time and vacuum compatibility of passive plasma cathodes (explosive emission cathodes, metal ceramic, velvet, carbon fiber with and without CsI coating, carbon capillary, and multi-capillary and multi-slot) and active plasma cathodes (ferroelectric and hollow anodes) are described and discussed. These parameters were studied and characterized using different timeand space-resolved electrical, optical, spectroscopic, Thomson scattering, Laser Induced Fluorescence and Xray diagnostics. It was shown that the operation of passive sources is governed by the formation of flashover plasma whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode plasma sources, the plasma parameters are controlled by the driving pulse and discharge current, respectively. In addition, parameters of high-current electron beams generated in high voltage and high current electron diodes with these plasma cathodes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Mesyats, A. S. Nasibov, V. V. Kremnev, Formation of Nanosecond High Voltage Pulses [in Russian], Energy, Moscow (1970).

    Google Scholar 

  2. V. V. Kremnev and G. A. Mesyats, Methods of Amplification and Transformation of Pulses [in Russian], Nauka, Sibirian division (1987).

    Google Scholar 

  3. G. A. Mesyats, D. I. Proskurovsky, Pulsed Electrical Discharge in Vacuum, Springer-Verlag, Berlin, Heidelberg (1989).

    Book  Google Scholar 

  4. T. H. Martin, A. H. Guenther and M. Kristiansen, J. C. Martin on Pulsed Power, Plenum Press, New York (1996).

    Book  Google Scholar 

  5. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases, URO-Press (1998).

  6. G. A. Mesyats, Explosive Electron Emission, URO, Ekaterinburg (1998)

    Google Scholar 

  7. G. A. Mesyats, Pulsed Power and Electronics [in Russian], Nauka, Moscow (2004).

    Google Scholar 

  8. G. A. Mesyats, Pulsed Power, Kluwer Academic/Plenum Publishers, New York (2005).

    Google Scholar 

  9. A. A. Neuber, Explosively Driven Pulsed Power, Springer-Verlag Berlin and Heidelberg (2005).

    Book  Google Scholar 

  10. H. Bluhm, Pulsed Power Systems: Principle and Applications, Springer-Verlag Berlin and Heidelberg (2006),

    Google Scholar 

  11. J. Lehr & P. Ron, Foundation of Pulsed Power Technology, IEEE Press, Wiley (2017).

    Book  Google Scholar 

  12. G. A. Mesyats, High Current Electron beams in Technology [in Russian], Nauka (1983).

  13. R. B. Miller, Introduction to the Physics of Intense Charged Particle Beams, Plenum Press, New York (1982).

    Book  Google Scholar 

  14. S. Humphries, Jr., Charged Particle Beams, John Willey and Sons (1990).

  15. I. G. Brown, The Physics and Technology of Ion Sources, John Willey & Sons, Ney York (1989).

    Google Scholar 

  16. J. R. Ross, Industrial Plasma Engineering, IOP, Bristol (1995).

    Google Scholar 

  17. E. Oks, Plasma Cathode Electron Sources: Physics Technology, Applications, Wiley-VCH Verlag (2006).

    Book  Google Scholar 

  18. A. S. Gilmour, Jr., Microwave Tubes, Artech House, Norwood (1986).

    Google Scholar 

  19. R. K. Parker, R. E. Anderson, and C. V. Duncan, J. Appl. Phys. 45, 2463 (1974).

    Article  ADS  Google Scholar 

  20. P. Yonas, J. Pouky, and K. Prestwitch, Nucl. Fusion 14, 731 (1974).

    Article  ADS  Google Scholar 

  21. R. B. Baksht, N. A. Rotakhin, and B. A. Kalambaev, Sov. Phys. Tech. Phys. 25, 294 (1980).

    ADS  Google Scholar 

  22. D. D. Hinshelwood, IEEE Trans. Plasma Sci. 11, 188 (1983).

    Article  ADS  Google Scholar 

  23. N. M. Bykov, V. P. Gubanov, A. V. Gunin, S. D. Korovin, O. P. Kutenkov, V. F. Landl, S. D. Polevin, and V. V. Rostov, “Development of long lifetime cold cathodes,” in: Proc 10th Intern. Pulsed Power Conf., Albuquerque, NM, 1995, p.71.

  24. Yu. A. Kotov, E. A. Litvinov, S. Yu. Sokovnin, M. E. Balesin, and V. R. Khrustov, Dokl. Phys. 45, 18 (2000).

    Article  ADS  Google Scholar 

  25. V. A. Burtsev, M. A. Vasilevskii, O. A. Gusev, A. V. Efimov, I. M. Roife, E. V. Seredenko, and V. I. Engel’ko, Sov. Phys. Tech. Phys. 23, 845 (1978).

    ADS  Google Scholar 

  26. R. Prohaska and A. Fisher, Rev. Sci. Instrum. 53, 1092 (1982).

    Article  ADS  Google Scholar 

  27. D. A. Kirkpatrick, R. E. Shefer, and G. Bekefi, J. Appl. Phys. 57, 5011 (1985).

    Article  ADS  Google Scholar 

  28. R. B. Miller, J. Appl. Phys. 84, 3880 (1998).

    Article  ADS  Google Scholar 

  29. D. A. Spencer, M. J. LaCour, M. D. Sena, M. D. Mitchell, M. D. Haworth, K. J. Hendricks, and T. A. Spencer, IEEE Trans. Plasma Sci. 28, 517 (2000).

    Article  ADS  Google Scholar 

  30. D. Shiffler, M. Ruebush, M. Haworth, R. Umstattd, M. LaCour, K. Golby, D. Zagar, and T. Knowles, Rev. Sci. Instrum. 73, 4358 (2002).

    Article  ADS  Google Scholar 

  31. Y. M. Saveliev, W. Sibbet, and D. Parkes, Appl. Phys. Lett. 81, 2343 (2002).

    Article  ADS  Google Scholar 

  32. M. Friedman, M. Myers, F. Hegeler, S. B. Swanekamp, M. F. Wolford, J. D. Sethian, and L. Ludekingd, J. Appl. Phys. 96, 7714 (2004).

    Article  ADS  Google Scholar 

  33. N. N. Koval, Yu. E. Kreindel, E. M. Oks, and P. M. Schanin, Sov. Tech. Phys. Lett. 9, 246 (1983).

    Google Scholar 

  34. S. Humphries, Jr., S. Coffey, M. Savage, L. K. Len, G. W. Cooper, and D. M. Woodal, J. Appl. Phys. 57, 709 (1985).

    Article  ADS  Google Scholar 

  35. E. M. Oks, A. A. Chagin, and P. M. Schanin, Sov. Phys. Tech. Phys. 34, 1210 (1989).

    Google Scholar 

  36. D. S. Nazarov, G. E. Ozur, and D. I. Proskurovsky, Instrum. Exp. Tech. 39, 546 (1996).

    Google Scholar 

  37. Yu. E. Kreindel, Sov. Phys. Tech. Phys. 11, 412 (1966).

    Google Scholar 

  38. V. J. Kovarik, A. I. Hershcovitch, and K. Prelec, Rev. Sci. Instrum. 53, 819 (1982).

    Article  ADS  Google Scholar 

  39. A. I. Hershcovitch, V. J. Kovarik, and K. Prelec, J. Appl. Phys. 67, 671 (1990).

    Article  ADS  Google Scholar 

  40. A. Hershcovitch, Appl. Phys. Lett. 68, 464 (1996).

    Google Scholar 

  41. A. A. Chagin and E. M. Oks, Sov. Phys. Tech. Phys. 33, 702 (1988).

    Google Scholar 

  42. D. M. Goebel, J. T. Crow, and A. T. Forrester, Rev. Sci. Instrum. 49, 469 (1978).

    Article  ADS  Google Scholar 

  43. D. M. Goebel and R. W. Watkins, Rev. Sci. Instrum. 71, 388 (2000).

    Article  ADS  Google Scholar 

  44. V. I. Gushenets, N. N. Koval, V. S. Tolkachev, and P. M. Schanin, Tech. Phys. 69, 62 (1999).

    Google Scholar 

  45. G. Rosenman, D. Shur, Ya. E. Krasik, and A. Dunaevsky, Review – Ferroelectric cathodes, J. Appl. Phys. 88, 6109 (2000) and references therein.

  46. Ya. E. Krasik, A. Dunaevsky, J. Felsteiner, A. Krokhmal, C. Leibovitch, I. Schnitzer, A. Rosenberg, and J. Shiloh, IEEE Trans. Plasma Sci. 28, 1642 (2000).

    Article  ADS  Google Scholar 

  47. Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001).

    Article  ADS  Google Scholar 

  48. Ya. E. Krasik, K. Chirko, A. Dunaevsky, J. Felsteiner, A. Krokhmal, J. Gleizer, A. Sayapin, and J. Felsteiner, Special issue IEEE Trans. Plasma Sci. 31, 49 (2003).

    Article  ADS  Google Scholar 

  49. Ya. E. Krasik, J. Z. Gleizer, A. Krokhmal, K. Chirko, A. Sayapin, J. Felsteiner, V. Bernshtam, and V. I. Gushenets, Vacuum 77, 391 (2005).

    Article  ADS  Google Scholar 

  50. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, V. Vekselman, Y. Hadas, A. Krokhmal, K. Chirko, O. Peleg and J. Felsteiner, IEEJ Trans. Fundamentals and Materials 127, 697 (2007).

    Article  ADS  Google Scholar 

  51. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, V. Vekselman, Y. Hadas, and J. Felsteiner, IEEE Trans. Plasma Scie. 36, 768 (2008).

    Article  ADS  Google Scholar 

  52. Ya. E. Krasik, D. Yarmolich, J. Z. Gleizer, V. Vekselman, Y. Hadas, V. Tz. Gurovich, and J. Felsteiner, Phys. Plasma 16, 057103 (2009).

    Article  ADS  Google Scholar 

  53. T. Queller, J. Z. Gleizer, Ya. E. Krasik, V. A. Bernshtam, and U. Dai, “, IEEE Trans. Plasma Scie. 42, 1224 (2014).

    Article  ADS  Google Scholar 

  54. Ya. E. Krasik, A. Dunaevsky, A. Krokhmal, J. Felsteiner, A. V. Gunin, I. V. Pegel, and S. D. Korovin, J. Appl. Phys. 89, 2379 (2001).

    Article  ADS  Google Scholar 

  55. Ya. E. Krasik, A. Dunaevsky, J. Felsteiner, J. Z. Gleizer, Yu. A. Kotov, S. Yu. Sokovnin, and M. E. Balezin, J. Appl. Phys. 91, 9385 (2002).

    Article  ADS  Google Scholar 

  56. Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Eur. Phys. J. D 15, 345 (2001).

    Article  ADS  Google Scholar 

  57. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, A. Krokhmal, V. Ts. Gurovich, E. Efimov, J. Felsteiner, V. Bernshtam, and Yu. M. Saveliev, J. Appl. Phys. 98, 093308 (2005).

    Google Scholar 

  58. V. Vekselman, J. Gleizer, D. Yarmolich, J. Felsteiner, Ya. Krasik, L. Liu, and V. Bernshtam, Appl. Phys. Lett. 93, 081503 (2008).

    Article  ADS  Google Scholar 

  59. D. Shiffler, J. Heggemeier, M. LaCour, K. Golby, and M. Ruebush, Phys. Plasmas 11, 1680 (2004).

    Article  ADS  Google Scholar 

  60. D. Shiffler, M. Haworth, K. Cartwright, R. Umstattd, M. Ruebush, S. Heidger, M. LaCour, K. Golby, D. Sullivan, P. Diselis, and J. Luginsland, IEEE Trans. Plasma Sci. 36, 718 (2008).

    Article  ADS  Google Scholar 

  61. Yu. V. Ralchenko and Y. Maron, J. Quant. Spectrosc. Radiat. Transf. 71, 609 (2001).

    Article  ADS  Google Scholar 

  62. M. Friedman, M. Myers, F. Hegeler, S. B. Swanekamp, J. D. Sethian, and L. Ludekingd, Appl. Phys. Lett. 82, 179 (2003).

    Article  ADS  Google Scholar 

  63. J. Z. Gleizer, Y. Hadas, V. Tz. Gurovich, and Ya. E. Krasik, J. Appl. Phys. 103, 043302 (2008).

    Article  ADS  Google Scholar 

  64. J. Z. Gleizer, Y. Hadas, D. Yarmolich, J. Felsteiner, and Ya. E. Krasik, Appl. Phys. Lett. 90, 181501 (2007).

    Article  ADS  Google Scholar 

  65. J. Z. Gleizer, Y. Hadas, and Ya. E. Krasik, Europhys. Lett. 82, 55001 (2008).

    Article  ADS  Google Scholar 

  66. D. Yarmolich, V. Vekselman, V. Tz. Gurovich, J. Z. Gleizer, J. Felsteiner, and Ya. E. Krasik, Phys. Plasmas 15, 123507 (2008).

    Article  ADS  Google Scholar 

  67. J. Z. Gleizer, T. Queller, Yu. Bliokh, S. Yatom, V. Vekselman, V. Bernshtam and Ya. E. Krasik, J. Appl. Phys. 112, 023303 (2012).

    Article  ADS  Google Scholar 

  68. T. Queller, J. Z. Gleizer, and Ya. E. Krasik, J. Appl. Phys. 114, 123303 (2013).

    Article  ADS  Google Scholar 

  69. G. Shafir, M. Kreif, J. Z. Gleizer, S. Gleizer, Ya. E. Krasik, A. V. Gunin, O. P. Kutenkov, I. V. Pegel, and V. V. Rostov, J. Appl. Phys. 118, 193302 (2015).

    Article  ADS  Google Scholar 

  70. Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, J. Appl. Phys. 85, 7946 (1999).

    Article  ADS  Google Scholar 

  71. A. Dunaevsky, Ya. E. Krasik, J. Felsteiner, and S. Dorfman, J. Appl. Phys. 85, 8464 (1999).

    Article  ADS  Google Scholar 

  72. A. Dunaevsky, Ya. E. Krasik, J. Felsteiner, and S. Dorfman, J. Appl. Phys. 85, 8474 (1999).

    Article  ADS  Google Scholar 

  73. A. Dunaevsky, Ya. E. Krasik, J. Felsteiner, and A. Sternlieb, J. Appl. Phys. 90, 3689 (2001).

    Article  ADS  Google Scholar 

  74. A. Dunaevsky, K. Chirko, Ya. E. Krasik, J. Felsteiner, and V. Bernshtam, J. Appl. Phys. 90, 4108 (2001).

    Article  ADS  Google Scholar 

  75. A. Dunaevsky, Ya. E. Krasik, J. Felsteiner, and A. Krokhmal, J. Appl. Phys. 87, 3270 (2000).

    Article  ADS  Google Scholar 

  76. A. Dunaevsky, Ya. E. Krasik, J. Felsteiner, S. Dorfman, A. Berner, and A. Sternlieb, J. Appl. Phys. 89, 4480 (2001).

    Article  ADS  Google Scholar 

  77. A. Dunaevsky, Ya. E. Krasik, and J. Felsteiner, J. Appl. Phys. 91, 975 (2002).

    Article  ADS  Google Scholar 

  78. K. Chirko, Ya. E. Krasik and J. Felsteiner, J. Appl. Phys. 92, 5691 (2002).

    Article  ADS  Google Scholar 

  79. K. Chirko, A. Sayapin, Ya. E. Krasik, and J. Felsteiner, J. Appl. Phys. 94, 1420 (2003).

    Article  ADS  Google Scholar 

  80. O. Peleg, K. Chirko, V. Gurovich, J. Felsteiner and Ya. E. Krasik, J. Appl. Phys. 97, 113307 (2005).

    Article  ADS  Google Scholar 

  81. K. Chirko, Ya. E. Krasik, A. Sayapin, and J. Felsteiner, Vacuum 77, 385 (2005).

    Article  ADS  Google Scholar 

  82. J. Z. Gleizer, K. Chirko, D. Yarmolich, S. Efimov and Ya. E. Krasik, European Phys. J. Appl. Phys. 34, 35 (2006).

    Article  ADS  Google Scholar 

  83. D. Yarmolich, V. Vekselman, H. Sagie, V. Tz. Gurovich, and Ya. E. Krasik, Plasma Devices Oper. 14, 293 (2006).

    Article  Google Scholar 

  84. D. Yarmolich, V. Vekselman, and Ya. E. Krasik, Appl. Phys. Lett. 92, 081504 (2008).

    Article  ADS  Google Scholar 

  85. D. Yarmolich, V. Vekselman, V. T. Gurovich, J. Felsteiner, and Ya. E. Krasik, Plasma Sources Sci. Technol. 17, 035002 (2008).

    Article  ADS  Google Scholar 

  86. D. Yarmolich, V. Vekselman, V. T. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008).

    Article  ADS  Google Scholar 

  87. Ya. E. Krasik, K. Chirko, J. Z. Gleizer, A. Krokhmal, A. Dunaevsky and J. Felsteiner, European Phys. J. D19, 89 (2002).

    ADS  Google Scholar 

  88. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, V. Vekselman, Y. Hadas, and J. Felsteiner, IEEE Trans. Plasma Sci. 36, 768 (2008).

    Article  ADS  Google Scholar 

  89. N. N. Koval, Yu. E. Kreindel, E. M. Oks, and P. M. Schanin, Sov. Tech. Phys. Lett. 9, 246 (1983).

    Google Scholar 

  90. S. Humphries, Jr., S. Coffey, M. Savage, L. K. Len, G. W. Cooper, and D. M. Woodal, J. Appl. Phys. 57, 709 (1985).

    Article  ADS  Google Scholar 

  91. E. M. Oks, A. A. Chagin, and P. M. Schanin, Sov. Phys. Tech. Phys. 34, 1210 (1989).

    Google Scholar 

  92. D. S. Nazarov, G. E. Ozur, and D. I. Proskurovsky, Instrum. Exp. Tech. 39, 546 (1996).

    Google Scholar 

  93. Yu. E. Kreindel, Sov. Phys. Tech. Phys. 11, 412 (1966).

    Google Scholar 

  94. V. J. Kovarik, A. I. Hershcovitch, and K. Prelec, Rev. Sci. Instrum. 53, 819 (1982).

    Article  ADS  Google Scholar 

  95. A. I. Hershcovitch, V. J. Kovarik, and K. Prelec, J. Appl. Phys. 67, 671 (1990).

    Article  ADS  Google Scholar 

  96. A. Hershcovitch, Appl. Phys. Lett. 68, 464 (1996).

    Article  ADS  Google Scholar 

  97. A. A. Chagin and E. M. Oks, Sov. Phys. Tech. Phys. 33, 702 (1988).

    Google Scholar 

  98. D. M. Goebel, J. T. Crow, and A. T. Forrester, Rev. Sci. Instrum. 49, 469 (1978).

    Article  ADS  Google Scholar 

  99. D. M. Goebel, Y. Hirooka, and T. A. Sketchley, Rev. Sci. Instrum. 56, 1717 (1985).

    Article  ADS  Google Scholar 

  100. D. M. Goebel and R. W. Watkins, Rev. Sci. Instrum. 71, 388 (2000).

    Article  ADS  Google Scholar 

  101. V. I. Gushenets, N. N. Koval, V. S. Tolkachev, and P. M. Schanin, Tech. Phys. 69, 62 (1999).

    Google Scholar 

  102. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, J. Felsteiner, and V. I. Gushenets, J. Appl. Phys. 94, 44 (2003).

    Article  ADS  Google Scholar 

  103. J. Z. Gleizer, A. Krokhmal, Ya. E. Krasik, and J. Felsteiner, J. Appl. Phys. 94, 6319 (2003).

    Article  ADS  Google Scholar 

  104. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, V. Ts. Gurovich, and J. Felsteiner, J. Appl. Phys. 95, 3304 (2004).

    Article  ADS  Google Scholar 

  105. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, V. Ts. Gurovich, and J. Felsteiner, Europhys. Lett. 66, 226 (2004).

    Article  ADS  Google Scholar 

  106. A. Krokhmal, J. Z. Gleizer, Ya. E. Krasik, D. Yarmolich, J. Felsteiner, and V. Bernshtam, J. Appl. Phys. 96, 4021 (2004).

    Article  ADS  Google Scholar 

  107. J. Z. Gleizer, D. Yarmolich, A. Krokhmal, Ya. E. Krasik, and J. Felsteiner, Eur. Phys. J. D 38, 276 (2005).

    Google Scholar 

  108. Ya. E. Krasik, J. Z. Gleizer, A. Krokhmal, V. Ts. Gurevich, D. Yarmolich, J. Felsteiner, V. Bernshtam, and V. I. Gushenets, Plasma Devices Operation 13, 19 (2005).

    Article  Google Scholar 

  109. J. Z. Gleizer, D. Yarmolich, V. Vekselman, J. Felsteiner, and Ya. E. Krasik, Plasma Devices Operation 14, 223 (2006).

    Article  Google Scholar 

  110. D. Yarmolich, V. Vekselman, J. Z. Gleizer, Y. Hadas, J. Felsteiner, V. Bernshtam, and Ya. E. Krasik, Plasma Devices Operation 15, 115 (2007).

    Article  Google Scholar 

  111. D. Yarmolich, V. Vekselman, J. Z. Gleizer, Y. Hadas, J. Felsteiner, and Ya.E. Krasik, Appl. Phys. Lett. 90, 011502 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. E. Krasik.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 17–32, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasik, Y.E. Plasma Cathode Research in Plasma Physics and Pulsed Power Laboratory. Russ Phys J 63, 1661–1677 (2021). https://doi.org/10.1007/s11182-021-02220-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02220-w

Keywords

Navigation