Skip to main content
Log in

Shape, size and phonon scattering effect on the thermal conductivity of nanostructures

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A phenomological model is described here to study the effect of size, shape and phonon scattering on the thermal conductivity of nanostructures. Using the classical model proposed by Guisbiers et al (Phys. Chem. Chem. Phys. 12, 7203 (2010), J. Phys. Chem. C 112, 4097 (2008)) in terms of the melting temperature of nanostructures, the expression for variation of thermal conductivity is obtained in terms of shape and size parameter. An additional term is included in the expression of thermal conductivity to consider the impact of phonon scattering due to the surface roughness with a decrease in size. The expression of thermal conductivity is obtained for spherical nanosolids, nanowires and nanofilms. The thermal conductivity is found to decrease in nanostructures in comparison with the counterpart bulk material. The values of thermal conductivity obtained from the present model are found to be close to the available experimental data for different values of roughness parameter which verifies the suitability of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C Weisbuch and B Vinter, Quantum semiconductor structures (Academic Press, San Diego, CA, 1991)

    Book  Google Scholar 

  2. A Yariv, Quantum electronics, 3rd edn (Wiley, New York, 1989)

    Google Scholar 

  3. R J Moitsheki and C Harley, Pramana – J. Phys.  77, 519 (2011)

    Article  ADS  Google Scholar 

  4. T Yao, Appl. Phys. Lett.  51(22), 1798 (1987)

    Article  ADS  Google Scholar 

  5. W S Capinski and H J Maris, Physica B  219–220, 699 (1996)

    Article  ADS  Google Scholar 

  6. E Ziambaras and P Hyldgaard, J. Appl. Phys.  99, 054303 (2006)

    Article  ADS  Google Scholar 

  7. M Malligavathy, S Iyyapushpam, S T Nishanthi and D Pathinettam Paditan, Pramana – J. Phys.  90: 44 (2018)

    Article  ADS  Google Scholar 

  8. Y He and G Galli, Phys. Rev. Lett.  108, 215901 (2012)

    Article  ADS  Google Scholar 

  9. W Liu and M Asheghi, Appl. Phys. Lett.  84, 3819 (2004)

    Article  ADS  Google Scholar 

  10. Z Wang and N Mingo, Appl. Phys. Lett.  97, 101903 (2010)

    Article  ADS  Google Scholar 

  11. C Q Sun, L K Pan, C M Li and S Li, Phys. Rev. B  72, 134301 (2005)

    Article  ADS  Google Scholar 

  12. A Malhotra and M Maldovan, J. Appl. Phys.  120, 204305 (2016)

    Article  ADS  Google Scholar 

  13. L H Liang and B Li, Phys. Rev. B  73, 153303 (2006)

    Article  ADS  Google Scholar 

  14. D G Cahill, P V Braun, G Chen, D R Clarke, S Fan, K E Goodson, P Keblinski, W P King, G D Mahan, A Majumdar, H J Maris, S R Phillpot, E Pop and L Shi, Appl. Phys. Rev.  1, 011305 (2014)

    Article  ADS  Google Scholar 

  15. G Guisbiers, Nanoscale Res. Lett.  5, 1132 (2010)

    Article  ADS  Google Scholar 

  16. G Guisbiers and L Buchaillot, Phys. Lett. A  374, 305 (2009)

    Article  ADS  Google Scholar 

  17. G Guisbiers, D Liu, Q Jiang and L Buchaillot, Phys. Chem. Chem. Phys.  12, 7203 (2010)

    Article  Google Scholar 

  18. G Guisbiers, M Kazan, O V Overschelde, M Wautelet and S Pereira, J. Phys. Chem. C  112, 4097 (2008)

    Article  Google Scholar 

  19. M Wautelet, Phys. Lett. A  246, 341 (1998)

    Article  ADS  Google Scholar 

  20. G Guisbiers and M José-Yacaman, Encyclopedia of interfacial chemistry: Surface science and electrochemistry, in: Reference module in chemistry, molecular sciences and chemical engineering (Elsevier, New York, 2018) pp. 875–885

    Google Scholar 

  21. J Ferrante, J H Rose and J R Smith, Appl. Phys. Lett.  44, 53 (1984)

    Article  ADS  Google Scholar 

  22. F A Lindemann, Phys. Z.  11, 609 (1910)

    Google Scholar 

  23. J G Dash, Rev. Mod. Phys. 71, 1737 (1999)

    Article  ADS  Google Scholar 

  24. J M Zimann, Electrons and phonons (Clarendon Press, Oxford, 1960), pp. 288, 58, 296, 456

  25. E J Post, Can. J. Chem.  31, 112 (1953)

    Google Scholar 

  26. A R Regal and V M Glazov, Semiconductors  29(5), 405 (1995)

    ADS  Google Scholar 

  27. G Soyez, J A Eastman, L J Thompson, G R Bai, P M Baldo and A W McCormick, Appl. Phys. Lett.  77, 1155 (2000)

    Article  ADS  Google Scholar 

  28. J Lim, K Hippalgaonkar, S C Andrews, A Majumdar and P Yang, Nano Lett.  12, 2475 (2012)

    Article  ADS  Google Scholar 

  29. D Li, Y Wu, P Kim, L Shi, P Yang and A Majumdar, Appl. Phys. Lett.  83, 3186 (2003)

    Article  ADS  Google Scholar 

  30. Y S Ju and K E Goodson, Appl. Phys. Lett.  74(20), 3005 (1999)

    Article  ADS  Google Scholar 

  31. W S Capinski, H J Maris, T Ruf, M Cardona, K Ploog and D S Katzer, Phys. Rev. B  59, 8105 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, M. Shape, size and phonon scattering effect on the thermal conductivity of nanostructures. Pramana - J Phys 91, 87 (2018). https://doi.org/10.1007/s12043-018-1660-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1660-8

Keywords

PACS Nos

Navigation