Skip to main content
Log in

Role of hydrothermal temperature on crystallinity, photoluminescence, photocatalytic and gas sensing properties of \(\hbox {TiO}_{2}\) nanoparticles

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

\(\hbox {TiO}_{2}\) nanoparticles were synthesised by hydrothermal method. The degree of crystallinity and phase purity were confirmed from the Raman spectra and X-ray diffraction. By increasing the hydrothermal temperature, crystallinity and AC conductivity of the \(\hbox {TiO}_{2}\) nanoparticles increase. Nitrogen adsorption–desorption measurements confirmed that the samples were mesoporous with an average pore diameter of 4.4–7.45 nm. Photocatalytic activity of \(\hbox {TiO}_{2}\) nanoparticles was evaluated and the sample hydrothermally treated at \(160^{\circ }\hbox {C}\) has the highest photocatalytic activity. In gas sensing measurements, sensitivity increases as a function of concentration and the response to ethanol vapour was better compared to other gases for the sample synthesised at \(160^{\circ }\hbox {C}\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A Fujishima and K Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  2. C Garzella, E Comini, E Tempesti, C Frigeri and G Sberveglieri, Sens. Actuators B 68, 189 (2000)

    Article  Google Scholar 

  3. M Anpo, Pure Appl. Chem. 72, 1265 (2000)

    Article  Google Scholar 

  4. Santhosh Singh and Madhvendra Nath Tripathi, Pramana – J. Phys. 89, 5 (2017)

    Article  ADS  Google Scholar 

  5. Haleh Kanganlou and Arash Abdollahi, Pramana – J. Phys. 86, 117 (2016), https://doi.org/10.1007/s12043-015-0966-z (2015)

  6. R Azimirad and S Safa, Pramana – J. Phys. 86, 653 (2016), https://doi.org/10.1007/s12043-015-1021-9 (2014)

  7. L Gomathi Devi and R Kavitha, Appl. Surf. Sci. 360, 601 (2016)

    Article  ADS  Google Scholar 

  8. Di Li, Fen Chen, Deli Jiang, Weidong Shi and Wenjun Zheng, Appl. Surf. Sci. 390, 689 (2016)

    Article  ADS  Google Scholar 

  9. Jianxiang Low, Bei Cheng and Jiaguo Yu, Appl. Surf. Sci. 392, 658 (2017)

    Article  ADS  Google Scholar 

  10. Swagata Banerjee, Dionysios D Dionysiou and Suresh C Pillai, Appl. Catal. B: Environ. 176, 396 (2015)

    Article  Google Scholar 

  11. Ewelina Grabowska, Magdalena Diak, Martyna Marchelek and Adriana Zaleska, Appl. Catal. B: Environ. 156–157, 213 (2014)

    Article  Google Scholar 

  12. S Girish Kumar and K S R Koteswara Rao, Appl. Surf. Sci. 391, 124 (2017)

    Article  ADS  Google Scholar 

  13. Chimmikuttanda Ponnappa Sajan, Swelm Wageh, Ahmed A Al-Ghamdi, Jiaguo Yu and Shaowen Cao, Nano Res. 9, 3 (2016)

    Article  Google Scholar 

  14. Quanlong Xu, Jiaguo Yu, Jun Zhanga, Jinfeng Zhanga and Gang Liu, Chem. Commun. 51, 7950 (2015)

    Article  Google Scholar 

  15. Xinyi Zhang, Jianfeng Yao, Dan Li, Xiaodong Chen, Huanting Wang, Leslie Y Yeo and James R Friend, Mater. Res. Bull. 55, 13 (2014)

    Article  Google Scholar 

  16. A Charanpahari, S S Umare and R Sasikala, Appl. Surf. Sci. 282, 408 (2013)

    Article  ADS  Google Scholar 

  17. Huang Fengping, Wang Shuai, Zhang Shuang, Fan Yingge, Li Chunxue, Wang Chuang and Liu Chun, Bull. Korean Chem. Soc. 35, 2512 (2014)

    Article  Google Scholar 

  18. Yuanjie Su, Ya Yang, Hulin Zhang, Yannan Xie, Zhiming Wu, Yadong Jiang, Naoki Fukata, Yoshio Bando and Zhong Lin Wang, Nanotechnol. 24, 295401 (2013)

    Article  Google Scholar 

  19. Jingshuai Chen, Shiyue Qin, Yuande Liu, Feng Xin and Xiaohong Yin, Res. Chem. Intermed. 40, 637 (2014)

    Article  Google Scholar 

  20. M Malligavathy, S Iyyapushpam, S T Nishanthi and D Pathinettam Padiyan, J. Exp. Nanosci. 11, 1074 (2016)

    Article  Google Scholar 

  21. T Ohsaka, F Izumi and Y Fujiki, J. Raman Spectrosc. 7, 321 (1978)

    Article  ADS  Google Scholar 

  22. X Wang, J Shen and Q Pan, J. Raman Spectrosc. 42, 1578 (2011)

    Article  ADS  Google Scholar 

  23. W Ma, Z Lu and M Zhang, Appl. Phys. A 66, 621 (1998)

    Article  ADS  Google Scholar 

  24. Qiang Liu, Dongyan Ding and Congqin Ning, Materials 7, 3262 (2014)

    Article  ADS  Google Scholar 

  25. Murat Akarsu, Meltem Asilturk, Funda Sayilkan, Nadir Kiraz, Ertugrul Arpac and Hikmet Sayilkan, Turkish J. Chem. 30, 333 (2006)

    Google Scholar 

  26. Manveen Kaur and N K Verma, J. Mater. Sci. Technol. 30, 328 (2014)

    Article  Google Scholar 

  27. Swapan K. Das, Manas K Bhunia and Asim Bhaumik, Dalton Trans. 39, 4382 (2010)

    Article  Google Scholar 

  28. H Tang, K Prasad, R Sanjines, P E Schimidd and F Levy, J. Appl. Phys. 75, 2042 (1994)

    Article  ADS  Google Scholar 

  29. N Serpone, D Lawless and R Khairutdinov, J. Phys. Chem. 99, 16646 (1995)

    Article  Google Scholar 

  30. J G Yu, T T Ma and S W Liu, Phys. Chem. Chem. Phys. 13, 3491 (2011)

    Article  Google Scholar 

  31. Haizel G Roy, Int. J. Mater. Sci. Innov. 1, 142 (2013)

    Google Scholar 

  32. J G Yu, L Yue, S W Liu, B B Huang and X Y Zhang, J. Colloid Interface Sci. 334, 58 (2009)

    Article  ADS  Google Scholar 

  33. A Ramchiary and S Samdarshi, Chem. Phys. Lett. 597, 63 (2014)

    Article  ADS  Google Scholar 

  34. Y X Zhang, G H Li, Y X Jin, Y Zhang, J Zhang and L D Zhang, Chem. Phys. Lett. 365, 300 (2002)

    Article  ADS  Google Scholar 

  35. T Sekiya, S Kamei and S Kurita, J. Lumin. 87, 1140 (2000)

    Article  Google Scholar 

  36. Batakrushna Santara and P K Giri, Mater. Chem. Phys. 137, 928 (2013)

    Article  Google Scholar 

  37. K P Priyanka, Sunny Joseph, Anu Tresa Sunny and Thomas Varghese, Nanosystems: Phys. Chem. Math. 4, 218 (2013)

    Google Scholar 

  38. F Rouquerol, J Rouquerol and K Singh, Adsorption by powders & porous solids: Principles, methodology and applications (Academic Press, San Diego, 1999)

    Google Scholar 

  39. S J Gregg and K S W Singh, Adsorption, surface area and porosity (Academic Press, London, 1982)

    Google Scholar 

  40. G C Collazzo, S L Jahn, N L V Carreno and E L Foletto, Braz. J. Chem. Eng. 28, 265 (2011)

    Article  Google Scholar 

  41. S Banerjee, J Gopal and P Muraleedharan, Curr. Sci. 90, 1378 (2006)

    Google Scholar 

  42. D Z Yu, R X Cai and Z H Liu, Spectrochem. Acta A 60, 1617 (2004)

    Article  ADS  Google Scholar 

  43. T X Wu, G M Liu and J C Zhao, J. Phys. Chem. B 102, 5845 (1998)

    Article  Google Scholar 

  44. Y Ma and J N Yao, J. Photochem. Photobiol. A 116, 167 (1998)

    Article  Google Scholar 

  45. Danli, Jian-Feng Huang and Li-Yun Cao, Ceram. Int. 40, 2647 (2014)

    Article  Google Scholar 

  46. M Juan, L Jorge and H J Marie, Appl. Catal. B 18, 281 (1998)

    Article  Google Scholar 

  47. G Blanchard, M Maunaye and G Martin, Water Res. 18, 1501 (1984)

    Article  Google Scholar 

  48. You-Peng Chen, Shao-Yang Liu, Han-Qing Yu, Hao Yin and Qian-Rong Li, Chemosphere 72, 532 (2008)

    Article  ADS  Google Scholar 

  49. W Li, C Liu, Y Zhou, Y Bai, X Feng, Z Yang, L Lu and K Y Chan, J. Phys. Chem. C 112, 20539 (2008)

    Article  Google Scholar 

  50. S Horikoshi, A Saitou, H Hidaka and N Serpone, Environ. Sci. Technol. 37, 5813 (2003)

    Article  ADS  Google Scholar 

  51. J Krysa, M Keppert, J Jirkovsky, V Stengl and J Subrt, Mater. Chem. Phys. 86, 333 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, M Malligavathy would like to thank UGC, New Delhi for BSR fellowship and the authors thank DST-FIST and UGC-SAP for the financial assistance to the Department of Physics, Manonmaniam Sundaranar University, Tirunelveli. The authors also thank SAIF, IIT Madras for recording HR-SEM & FT-Raman measurement and IIT, Mumbai for recording TEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Malligavathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malligavathy, M., Iyyapushpam, S., Nishanthi, S.T. et al. Role of hydrothermal temperature on crystallinity, photoluminescence, photocatalytic and gas sensing properties of \(\hbox {TiO}_{2}\) nanoparticles. Pramana - J Phys 90, 44 (2018). https://doi.org/10.1007/s12043-018-1533-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1533-1

Keywords

PACS Nos

Navigation