Skip to main content
Log in

Influence of quadrupole–quadrupole-type interaction on the chaotic dynamics of \(\alpha \)-helical proteins

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By proposing a model Hamiltonian in the first quantised form we investigate the chaotic dynamics of \(\alpha \)-helical proteins by taking into account the quadrupole–quadrupole-type interaction. The dynamics is studied by deriving Hamilton’s equations of motion and by plotting the time-series evolution and phase-space trajectories. Chaotic trajectories are observed in the phase-space plots. The effect of the interaction parameters on the stability of proteins is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C Branden and T Tooze, Introduction to protein structure (Garland Publishing, New York, 1991)

    Google Scholar 

  2. L Stryer, Biochemistry (W H Freeman, New York, 1992)

    Google Scholar 

  3. T E Creighton, Proteins: Structures and molecular properties (W H Freeman, New York, 1993)

    Google Scholar 

  4. A L Lehninger, D L Nelson and M M Cox, Principles of biochemistry (Worth Publishers, New York, 1993)

    Google Scholar 

  5. A S Davydov and N I Kisluka, Phys. Status Solidi B 59, 465 (1973)

    Article  ADS  Google Scholar 

  6. A S Davydov, Solitons in molecular systems (Reidel, Dordrecht, 1985)

    Book  MATH  Google Scholar 

  7. A S Davydov, A A Eremko and A I Segienko Ukr. Fiz. Zh. 23, 983 (1978)

    Google Scholar 

  8. V A Kuprievich and Z G Kudritskaya, Preprint, ITP – Institute for Theoretical Physics, Kiev, Vol. 82, 1982, p. 64-E

  9. A C Scott, Phys. Rev. A 26, 578 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. A C Scott, Phys. Rev. A 27, 2767 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. A C Scott, Phys. Scr. 29, 279 (1984)

    Article  ADS  Google Scholar 

  12. R Cotterill, Biophysics – An introduction (John Wiley and Sons, England, 1933)

    Google Scholar 

  13. D Brown and Z Ivic, Phys. Rev. B 40, 9876 (1989)

    Article  ADS  Google Scholar 

  14. P L Christiansen and A C Scott, Davydov’s soliton revisited (Plenum Press, New York, 1990)

    Book  Google Scholar 

  15. A S Davydov, Solitons in molecular systems, mathematics and its applications (Kluwer Academic Publishers, Dordrecht, 1991)

    Book  Google Scholar 

  16. W Förner, J. Phys.: Condens. Matter 5, 823 (1993)

    ADS  Google Scholar 

  17. E A Bartnik, J A Tuszynski and D Sept, Phys. Rev. A 204, 263 (1995)

    Google Scholar 

  18. W Förner, J. Mol. Model. 3, 78 (1997)

    Article  Google Scholar 

  19. M Daniel and M M Latha, Phys. Lett. A 252, 92 (1999)

    Article  ADS  Google Scholar 

  20. S Caspi and E Ben-Jacob, Phys. Lett. A 272, 124 (2000)

    Article  ADS  Google Scholar 

  21. M Daniel and M M Latha, Phys. Lett. A 302, 94 (2002)

    Article  ADS  Google Scholar 

  22. J Edler, R Pfister, V Pouthier, C Falvo and P Hamm, Phys. Rev. Lett. 93, 106405 (2004)

    Article  ADS  Google Scholar 

  23. K C Biswas, J Gillespie, F Majid, M E Edwards and A Biswas, Adv. Stud. Biol. 1, 1 (2009)

    Google Scholar 

  24. L Cruzeiro, J. Biol. Phys. 35(1), 43 (2009)

    Article  Google Scholar 

  25. M M Latha and S S Veni, Phys. Scr. 83, 035001 (2011)

    Article  ADS  Google Scholar 

  26. S S Veni and M M Latha, Phys. Scr. 86, 025003 (2012)

    Article  ADS  Google Scholar 

  27. S Jalan, Pramana – J. Phys. 84, 285 (2015)

    Article  ADS  Google Scholar 

  28. T Uzer, Phys. Rep. 199, 73 (1991)

    Article  ADS  Google Scholar 

  29. G Böhm, Chaos Solitons Fractals 1, 375 (1991)

    Article  ADS  Google Scholar 

  30. D J Thomas, J. Theor. Biol. 174, 299 (1995)

    Article  Google Scholar 

  31. M Braxenthaler, R Unger, D Auerbach, J A Given and J Moult, Proteins: Struct. Funct. Genetics 29, 417 (1997)

    Article  Google Scholar 

  32. B Gerstman and Y Garbourg, J. Polym. Sci. B Polym. Phys. 36, 2761 (1998)

    Article  ADS  Google Scholar 

  33. M S Li, M Cieplak and N Sushko, Phys. Rev. E 62, 4025 (2000)

    Article  ADS  Google Scholar 

  34. C N Kumar and A Khare, J. Phys. A: Math. Gen. 22, L849 (1989)

    Article  ADS  Google Scholar 

  35. K Angelin Jeba, M M Latha and S R Jain, Chaos 25, 113109 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. M Daniel and M M Latha, Physica A 298, 351 (2001)

    Article  ADS  Google Scholar 

  37. S S Veni and M M Latha, Commun. Nonlinear Sci. Numer. Simul. 19, 2758 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  38. S Beauno and M M Latha, Int. J. Sci. Res. 5, 93 (2015)

    Google Scholar 

  39. S S Veni and M M Latha, Physica A 396, 29 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work forms part of a major research project (No. 2013 / 37P / 42 / BRNS) sponsored by Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Latha.

Appendix

Appendix

The Jacobian matrix elements are as follows:

$$\begin{aligned} a_{11}&=-\,0.0298p_{x}-6.7708p_{x} x+4.96p_{x} x a,\\ a_{12}&=-\,0.0298p_{y}-6.7708p_{y} x+4.96p_{y} x a, \\ a_{13}&=1.4408+3.38543b+0.08963 x\\&\quad +10.1562 x^{2}-1.24 a \\&\quad -2.48X b-7.4399x^{2} a+0.01234 y \\&\quad +3.3854y^{2}-2.48 X y^{2}-2.48Yb, \\ a_{14}&=0.01237x+0.0298 y+6.7708xy-4.96xya,\\ a_{15}&=a_{16}=0,\quad \\ a_{17}&=-1.24x -2.48x(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}),\\ a_{18}&=-1.24x-2.48(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}),\quad \\ a_{21}&=-\,0.0123p_{x}-6.77086p_{x} y+4.96p_{x}ya,\\ a_{22}&=-\,0.0123p_{y}-6.77086p_{y} y+4.96p_{y}ya, \\ a_{23}&=0.01237 x\!+\! 0.02987 y+6.7708 xy-4.96xya,\\ a_{24}&=1.4408+3.38543d+0.0298 x-2.48d \\&\quad -1.24a\!+\! 0.037128 y\!+\!10.1562 y^{2}\!-\!7.4399y^{2}a,\\ a_{25}&=a_{26}=0,\quad a_{27}=a_{28}-1.24y-2.48c, \\ a_{31}&=-1.4405-10.1562 p_{x}^{2}-3.38543f +1.24a\\&\quad +7.4399p_{x}^{2}a+2.48(Xg+Yf)-0.012376y, \\ a_{32}&=-6.7708p_{x}p_{y}+4.96ap_{x}p_{y}, \\ a_{33}&=0.02987p_{x}+6.7708p_{x} x-4.96ap_{x}y,\\ a_{34}&=0.012376p_{x}+6.67708p_{x}y-4.96p_{x}ya,\quad \\ a_{35}&=a_{36}=0,\\ a_{37}&=-1.24p_{x}-2.48p_{x}c,\quad \\ a_{38}&=-1.24p_{x}-2.48p_{x}c,\\ a_{41}&=-6.77086p_{x}p_{y}+4.96p_{x}p_{y}a,\\ a_{42}&=-1.44057-3.3854e-10.15629p_{y}^{2} \\&\quad -0.02987x+1.24a,\\ a_{43}&=0.02987p_{y}+6.7708p_{y}x-4.96p_{y}xa,\quad \\ a_{44}&=0.01234p_{y}+6.7708p_{y}y-4.96p_{y}ya,\\ a_{45}&=a_{46}=0,\quad a_{47}=-1.24p_{y}-2.48p_{y}c,\quad \\ a_{48}&=-1.24p_{y}-2.48p_{y}c,\\ a_{51}&=1.24p_{y}\!+\! 2.48p_{y}c,\quad a_{52}=-1.24x-2.48xc,\quad \\ a_{53}&=-1.24y-2.48yc,\\ a_{54}&=a_{55}=0,\quad a_{57}=-26,\quad a_{58}=0,\quad \\ a_{61}&=1.24p_{x}+2.48p_{x}c,\\ a_{62}&=1.24p_{y}\!+\! 2.48P_{y}c,\quad a_{63}=-1.24x-2.48xc,\quad \\ a_{64}&=-1.24y-2.48yc,\\ a_{65}&=a_{66}=a_{67}=0,\quad a_{68}=26,\quad \\ a_{71}&=a_{72}=a_{73}=a_{74}=0, \\ a_{75}&=a_{76}=5.2316 \times 10^{24},\quad a_{77}=a_{78}=0, \\ a_{81}&=a_{82}=a_{83}=a_{84}=0 \\&=a_{85}=a_{86}=a_{87}=a_{88}=0, \end{aligned}$$

where \(X+Y=a\), \(p_{x}^{2}+p_{y}^{2}=b\), \(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}=c\), \(p_{x}^{2}+p_{y}^{2}+x^{2}=d\), \(x^{2}+y^{2}+p_{x}^{2}=e\), \(x^{2}+y^{2}+p_{y}^{2}=f\), \(x^{2}+y^{2}=g\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeba, K.A., Latha, M.M. & Jain, S.R. Influence of quadrupole–quadrupole-type interaction on the chaotic dynamics of \(\alpha \)-helical proteins. Pramana - J Phys 91, 40 (2018). https://doi.org/10.1007/s12043-018-1608-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1608-z

Keywords

PACS Nos

Navigation