Skip to main content
Log in

Kink degeneracy and rogue potential solution for the (3+1)-dimensional B-type Kadomtsev–Petviashvili equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we obtained the exact breather-type kink soliton and breather-type periodic soliton solutions for the (3 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation using the extended homoclinic test technique. Some new nonlinear phenomena, such as kink and periodic degeneracies, are investigated. Using the homoclinic breather limit method, some new rational breather solutions are found as well. Meanwhile, we also obtained the rational potential solution which is found to be just a rogue wave. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. M J Ablowitz and P A Clarkson, Solitons, nonlinear evolution equations and inverse scattering ( Cambridge University Press, 1991)

  2. M L Wang, Phys. Lett. A 213, 279 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. C H Gu, H S Hu and Z X Zhou, Darbour transformation in soliton theory and geometric applications ( Shanghai Science and Technology Press, Shanghai, 1999)

    Google Scholar 

  4. V B Matveev and M A Salle, Darboux transformation and solitons ( Springer, 1991)

  5. R Hirota, Fundamental properties of the binary operators in soliton theory and their generalization, in: Dynamical problem in soliton systems edited by S Takeno, Springer Series in Synergetics, Vol. 30 (Springer, Berlin, 1985)

  6. R Hirota, The direct method in soliton theory ( Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  7. S A El-Wakil and M A Abdou, Nonlin. Anal. 68, 35 (2008)

    Article  MathSciNet  Google Scholar 

  8. P J Olver, Application of Lie groups to differential equations (Springer, New York, 1983)

  9. Z D Dai, J Liu, X P Zeng and Z J Liu, Phys. Lett. A 372, 5984 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. L A Dickey, Soliton equations and Hamiltonian systems, 2nd edn (World Scientific, Singapore, 2003)

  11. Z D Dai and D Q Xian, Commun. Nonlinear Sci. Numer. Simulat. 14, 3292 (2009)

    Article  ADS  Google Scholar 

  12. Z H Xu, D Q Xian and H L Chen, Appl. Math. Comput. 215, 4439 (2010)

    MathSciNet  Google Scholar 

  13. M Jimbo and T Miwa, Publ. Res. Inst. Math. Sci. 19, 943 (1983)

    Article  MathSciNet  Google Scholar 

  14. H F Shen and M H Tu, J. Math. Phys. 52, 032704 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. K L Tian, J P Cheng, and Y Cheng, Science China-Mathematics 54, 257 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. H C Ma, Y Wang, and Z Y Qin, Appl. Math. Comput. 208, 564 (2009)

    MathSciNet  Google Scholar 

  17. A M Wazwaz, Comput. Fluids 86, 357 (2013)

    Article  MathSciNet  Google Scholar 

  18. Y L Kang, Y Zhang, and L G Jin, Appl. Math. Comput. 224, 250 (2013)

    MathSciNet  Google Scholar 

  19. M G Asaad and W X Ma, Appl. Math. Comput. 218, 5524 (2012)

    MathSciNet  Google Scholar 

  20. Z H Xu, H L Chen, and Z D Dai, Appl. Math. Lett. 37, 34 (2014)

    Article  MathSciNet  Google Scholar 

  21. N Akhmediev, A Ankiewicz and M Taki, Phys. Lett. A 373, 675 (2009)

    Article  ADS  Google Scholar 

  22. H L Chen, Z H Xu and Z D Dai, Abs. Appl. Anal. 7, 378167 (2014)

    MathSciNet  Google Scholar 

  23. Z D Dai, J Liu and D L Li, Appl. Math. Comput. 207, 360 (2009)

    MathSciNet  Google Scholar 

  24. Z D Dai, J Liu, X P Zeng and Z J Liu, Phys. Lett. A 372, 5984 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. A Ankiewicz, J M Soto-Crespo and N Akhmediev, Phys. Rev. E 81, 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. Y S Tao and J S He, Phys. Rev. E 85, 026601 (2012)

    Article  ADS  Google Scholar 

  27. U Bandelow and N Akhmediev, Phys. Rev. E 86, 026606 (2012)

    Article  ADS  Google Scholar 

  28. S H Chen, Phys. Rev. E 88, 023202 (2013)

    Article  ADS  Google Scholar 

  29. J S He, S W Xu and K Porsezian, J. Phys. Soc. Jpn 81, 124007 (2012)

    Article  ADS  Google Scholar 

  30. J S He, S W Xu, and K Porsezian, J. Phys. Soc. Jpn 81, 033002 (2012)

    Article  ADS  Google Scholar 

  31. Q L Zha, Phys. Lett. A 377, 855 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. J S He, H R Zhang, L H Wang, K Porsezian and A S Fokas, Phys. Rev. E 87, 052914 (2013)

    Article  ADS  Google Scholar 

  33. L H Wang, K Porsezian and J S He, Phys. Rev. E 87, 053202 (2013)

    Article  ADS  Google Scholar 

  34. S W Xu, J S He and L H Wang, J. Phys. A: Math and Theor. 44, 305203 (2011)

    Article  MathSciNet  Google Scholar 

  35. S W Xu and J S He, J. Math. Phys. 53, 063507 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. L J Guo, Y S Zhang, S W Xu, Z W Wu and J S He, Phys. Scr. 89, 035501 (2014)

    Article  ADS  Google Scholar 

  37. Y S Zhang, L J Guo, Z X Zhou and J S He, Lett. Math. Phys. l05, 853 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. B L Guo, L M Ling and Q P Liu, Stud. Appl. Math. 130, 317 (2013)

    Article  MathSciNet  Google Scholar 

  39. Y S Zhang, L J Guo, S W Xu, Z W Wu and J S He, Commun. Nonlin. Sci. Numer. Simulat. 19, 1706 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  40. Y Ohta and J K Yang, J. Phys. A: Math. Theor. 46, 105202 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. P Dubard and V B Matveev, Nonlinearity 26, 93 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. J S He, S W Xu, M S Ruderman and R Erdèlyi, Chin. Phys. Lett. 31, 010502 (2014)

    Article  ADS  Google Scholar 

  43. J S He, L J Guo, Y S Zhang and A Chabchoub, Proc. R. Soc. A 470, 20140318 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  44. F Baronio, M Conforti, A Degasperis, S Lombardo, M Onorato, and S Wabnitz, Phys. Rev. Lett. 113, 034101 (2014)

    Article  ADS  Google Scholar 

  45. D Q Qiu, J S He, Y S Zhang and K Porsezian, Proc. R. Soc. A 471, 20150236 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. P Walczak, S Randoux and P Suret, Phys. Rev. Lett. 114, 143903 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. S Birkholz, C Brèe, A Demircan, G Steinmeyer, S Randoux and P Suret, Phys. Rev. Lett. 114, 213901 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewer for valuable suggestions and help.

This work was supported by the Chinese Natural Science Foundation (Grant Nos 11361048, 10971169), Sichuan Educational Science Foundation (Grant No. 15ZB0113) and Southwest University of Science and Technology Foundation (Grant No. 14zx1108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZHENHUI XU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

XU, Z., CHEN, H. & DAI, Z. Kink degeneracy and rogue potential solution for the (3+1)-dimensional B-type Kadomtsev–Petviashvili equation. Pramana - J Phys 87, 31 (2016). https://doi.org/10.1007/s12043-016-1232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1232-8

Keywords

PACS Nos

Navigation