Skip to main content
Log in

Neutrinos in the time of Higgs

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, the recent progress in the determination of neutrino oscillation parameters and future prospects have been discussed. The tiny neutrino masses as inferred from oscillation data and cosmology cannot be explained naturally by the Higgs mechanism and warrant some new physics. The latter can be connected to the Majorana nature of the neutrinos which can be probed by neutrinoless double beta decay (0 ν β β). The paper also summarizes the latest experimental results in 0 ν β β and discusses some implications for the left–right symmetric model which could be a plausible new physics scenario for the generation of neutrino masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Planck Collaboration: P A R Ade et al, arXiv:1303. 5076 [astro-ph.CO]

  2. T2K Collaboration: K Abe et al, Phys. Rev. Lett. 107, 041801 (2011)

    Article  Google Scholar 

  3. RENO Collaboration: J K Ahn et al, Phys. Rev. Lett. 108, 191802 (2012) Daya-Bay Collaboration: F P An et al, Phys. Rev. Lett. 108, 171803 (2012) Double-CHOOZ Collaboration: Y Abe et al, Phys. Rev. Lett. 108, 131801 (2012)

  4. http://www.nu-fit.org/

  5. D V Forero, M Tortola and J W F Valle, arXiv:1405. 7540 [hep-ph]

  6. F Capozzi, G L Fogli, E Lisi, A Marrone, D Montanino, and A Palazzo, Phys. Rev. D 89, 093018 (2014)

    Article  ADS  Google Scholar 

  7. T2K Collaboration: Y Itow et al, hep-ex/0106019

  8. NO νA Collaboration: D S Ayres et al, hep-ex/0503053

  9. K Abe, T Abe, H Aihara, Y Fukuda, Y Hayato, K Huang, A K Ichikawa, M Ikeda et al, arXiv:1109.3262 [hep-ex]

  10. A Stahl, C Wiebusch, A M Guler, M Kamiscioglu, R Sever, A U Yilmazer, C Gunes, D Yilmaz et al, CERN-SPSC-2012-021, SPSC-EOI-007

  11. LBNE Collaboration: M Bass et al, arXiv:1311.0212[hep-ex]

  12. https://web.fnal.gov/project/LBNF/SitePages/Home.aspx

  13. H Minakata and H Nunokawa, J. High Energy Phys. 0110, 001 (2001)

    Article  ADS  Google Scholar 

  14. S Prakash, S K Raut, and S U Sankar, Phys. Rev. D 86, 033012 (2012)

    Article  ADS  Google Scholar 

  15. P Huber, M Lindner and W Winter, Comput. Phys. Commun. 167, 195 (2005) P Huber, J Kopp, M Lindner, M Rolinec and W Winter, Comput. Phys. Commun. 177, 432 (2007)

  16. V Barger, D Marfatia and K Whisnant, Phys. Rev. D 65, 073023 (2002) P Huber and W Winter, Phys. Rev. D 68, 037301 (2003) A Y Smirnov, hep-ph/0610198

  17. S K Raut, R S Singh, and S U Sankar, Phys. Lett. B 696, 227 (2011)

    Article  ADS  Google Scholar 

  18. A Dighe, S Goswami, and S Ray, Phys. Rev. Lett. 105, 261802 (2010)

    Article  ADS  Google Scholar 

  19. http://www.tifr.res.in/ino

  20. MEMPHYS Collaboration: L Agostino et al, J. Cosmol. Astropart. Phys. 1301, 024 (2013)

    Article  Google Scholar 

  21. IceCube-PINGU Collaboration: M G Aartsen et al, arXiv:1401.2046 [physics.ins-det]

  22. V Barger, R Gandhi, P Ghoshal, S Goswami, D Marfatia, S Prakash, S K Raut and S U Sankar, Phys. Rev. Lett. 109, 091801 (2012) R Gandhi, P Ghoshal, S Goswami and S U Sankar, Phys. Rev. D 78, 073001 (2008)

  23. M M Devi, T Thakore, S K Agarwalla and A Dighe, arXiv:1406.3689 [hep-ph]

  24. M Ghosh, P Ghoshal, S Goswami, and S K Raut, J. High Energy Phys. 1403, 094 (2014)

    Article  ADS  Google Scholar 

  25. M Ghosh, S Goswami and S K Raut, arXiv:1412.1744[hep-ph]

  26. M Ghosh, P Ghoshal, S Goswami and S K Raut, Nucl. Phys. B 884, 274 (2014) M Ghosh, P Ghoshal, S Goswami and S K Raut, Phys. Rev. D 89(1), 011301 (2014)

  27. W -Y Keung and G Senjanovic, Phys. Rev. Lett. 50, 1427 (1983)

    Article  ADS  Google Scholar 

  28. H V Klapdor-Kleingrothaus and I V Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006)

    Article  ADS  Google Scholar 

  29. KamLAND-Zen Collaboration: A Gando et al, Phys. Rev. Lett. 110, 062502 (2013)

    Article  Google Scholar 

  30. EXO Collaboration: M Auger et al, Phys. Rev. Lett. 109, 032505 (2012)

    Article  Google Scholar 

  31. P S B Dev, S Goswami, M Mitra, and W Rodejohann, Phys. Rev. D 88, 091301 (2013)

    Article  ADS  Google Scholar 

  32. M T Mustonen and J Engel, arXiv:1301.6997 [nucl-th]

  33. GERDA Collaboration: M Agostini et al, arXiv:1307. 4720 [nucl-ex]

  34. H V Klapdor-Kleingrothaus et al, Eur. Phys. J. A 12, 147 (2001)

    Article  ADS  Google Scholar 

  35. IGEX Collaboration: C E Aalseth et al, Phys. Rev. D 65, 092007 (2002)

    Article  Google Scholar 

  36. V Tello, M Nemevsek, F Nesti, G Senjanovic and F Vissani, Phys. Rev. Lett. 106, 151801 (2011) J Chakrabortty, H Z Devi, S Goswami and S Patra J. High Energy Phys. 1208, 008 (2012)

  37. M Nemevsek, F Nesti, G Senjanovic and V Tello, arXiv:1112.3061 [hep-ph]

Download references

Acknowledgement

The author thanks M Ghosh and S Raut for their help with the figures presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SRUBABATI GOSWAMI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GOSWAMI, S. Neutrinos in the time of Higgs. Pramana - J Phys 86, 395–405 (2016). https://doi.org/10.1007/s12043-015-1160-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-1160-z

Keywords

PACS Nos

Navigation