Skip to main content
Log in

AP2/ERF Transcription Factors for Tolerance to Both Biotic and Abiotic Stress Factors in Plants

  • Review
  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Plants usually encounter multifactorial stresses in which two or more abiotic and/or biotic stress factors are present simultaneously. Under multifactorial stress, plant growth and survival are severely reduced, even if the levels of each individual stress are very low. Therefore, discovering multifactorial stress tolerance mechanisms is important for coordinating plant growth and uncovering plant response to combinations of two or more stress conditions. AP2/ERF (APETALA2/ethylene responsive factor) transcription factors (TFs) affect different hormone signaling pathways to regulate diverse developmental processes and stress responses. AP2/ERF TFs have specific protein and gene interaction partners that participate in the regulation of the stress response. AP2/ERF TFs are involved in the regulation of gene expression by specifically binding to cis elements in the promoter region of target genes. In this review, we have summarized the mechanism of AP2/ERF TFs in multifactorial stress responses. We have reviewed the recent major developments regarding the regulation and function of these genes, highlighting their role in multifactorial stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An J, Zhang X, Bi S, You C, Wang X, Hao Y (2020) The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. Plant J 101:573–589

    Article  CAS  PubMed  Google Scholar 

  • Büttner M, Singh KB (1997) Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) and ethylene-inducible, GCC box DNA-binding protein interact with an ocs element binding protein. Proc Natl Acad Sci USA 94:5961–5966

    Article  PubMed  PubMed Central  Google Scholar 

  • Bossi F, Cordoba E, Dupré P, Mendoza MS, Román CS, León P (2010) The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J 59

  • Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160(1):541–555

  • Chakravarthy S, Tuori R, D'Ascenzo M, Fobert P, Despres C, Martin G (2003) The Tomato transcription factor pti4 regulates defense-related gene Expression via GCC box and Non-GCC box cis elements. Plant Cell Online 15:3033–3050

  • Chen HY, Hsieh EJ, Cheng MC, Chen CY, Hwang SY, Lin TP (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol 211:599–613

    Article  CAS  PubMed  Google Scholar 

  • Chen WQ et al (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell Online 14:559–574

  • Cheng M-C, Liao P-M, Kuo W-W, Lin T-P (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162(3):1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong YH (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129(2):661–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Ai X, Xu F, Quan T, Liu S, Xia G (2012) Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene 511:38–45

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, Claeys H, Van Vlierberghe K, Matsui M, Inzé D (2015) The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol 169(1):166–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi M, Abdullah S, Aziz MA, Kadkhodaei S, Namasivayam P (2016) Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway. J Plant Physiol 107–120

  • Feng W, Li J, Long S, Wei S (2018) A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition. Plant Ence 278:20–31

    Google Scholar 

  • Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA 111(6):2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto SY (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell Online 12(3):393–404

    CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  CAS  PubMed  Google Scholar 

  • Gasch P, Fundinger M, Müller JT, Lee T, Bailey-Serres J, Mustroph A (2015) Redundant ERF-VII transcription factors bind an evolutionarily-conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell 160

  • Gibbs D, Vicente Conde J, Berckhan S, Mendiondo GM, Prasad G, Holdsworth MJ (2015) Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol 169(1):23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, Zhang SL (2017) Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud 58

  • Gu YQ (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in arabidopsis. Plant Cell 14:817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Jia R, Qi J, Chen S, Lei T, Xu L, Peng A, Yao L, Long Q, Li Z (2019) Functional analysis of citrus AP2 transcription factors identified CsAP2-09 involved in citrus canker disease response and tolerance. Gene 707:178–188

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217:109–119

    Article  PubMed  Google Scholar 

  • Hong E, Lim CW, Han SW, Lee SC (2017) Functional analysis of the pepper ethylene-responsive transcription factor, CaAIEF1, in enhanced ABA sensitivity and drought tolerance. Front Plant Sci 8:1407

    Article  PubMed  PubMed Central  Google Scholar 

  • Hongryul A, Inuk J, Seon-Ju S, Jinwoo P, Sungmin R, Ju-Kon K, Woosuk J, Hawk-Bin K, Sun K (2017) Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice. Front Plant Sci 8:1044

    Article  Google Scholar 

  • Jiang M, Ye ZH, Zhang HJ, Miao LX (2018) Broccoli plants over-expressing an ERF transcription factor gene BoERF1 facilitates both salt stress and sclerotinia stem rot resistance. J Plant Growth Regul 38:1–13

    Article  Google Scholar 

  • Jin JH, Zhang HX, Tan JY, Yan MJ, Li DW, Abid K, Gong ZH (2016) A new ethylene-responsive factor CaPTI1 gene of pepper (Capsicum annuum L.) involved in the regulation of defense response to phytophthora capsici. Front Plant Sci 6:1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Pan W, Zheng X, Cheng X, Liu M, Ma H, Ge X (2018) OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol Biol 98:51–65

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Chung PJ, Park SH, Redillas M, Kim YS, Suh JW, Kim JK (2017) Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J 15(10):1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kizis D, Lumbreras V, Pagès M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Dang F, Lin J, Yu L, Shi Y, Xiao Y, Huang M (2013) Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Physiol Biochem 62:70–78

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Jung H, Jang G, Jeong JS, Kim YS, Ha SH, Choi YD, Kim JK (2016) Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol 172(1):575–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Hwang EY, Seok HY, Tarte VN, Jeong MS, Jang SB, Moon YH (2015) Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep 34:223–231

    Article  CAS  PubMed  Google Scholar 

  • Li MY, Liu JX, Hao JN, Feng K, Xiong AS (2019) Genomic identification of AP2/ERF transcription factors and functional characterization of two cold resistance-related AP2/ERF genes in celery (Apium graveolens L.). Planta 250:1265–1280

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang D, Li H, Wang Y, Zhang Y, Wood AJ (2014) EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 3899–3911

  • Lv K, Li J, Zhao K, Chen S, Wei H (2019) Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Sci 292:110375

    Article  PubMed  Google Scholar 

  • Mehrnia M, Balazadeh S, Zanor M-I, Mueller-Roeber B (2013) EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis. Plant Physiol 162(2):842–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Phukan UJ, Tripathi V, Singh DK, Luqman S, Shukla RK (2015) PsAP2 an AP2/ERF family transcription factor fromPapaver somniferumenhances abiotic and biotic stress tolerance in transgenic tobacco. Plant Mol Biol 89:173–186

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2013) GmDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 161:346–361

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiol 169(1):32–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano T (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 182(2):840–856

    Google Scholar 

  • Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X (2018) The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep 37(7):1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138(1):341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

    Article  CAS  PubMed  Google Scholar 

  • Parent B, Bonneau J, Maphosa L, Kovalchuk A, Langridge P (2017) Quantifying wheat sensitivities to environmental constraints to dissect genotype × environment interactions in the field. Plant Physiol 174:1669–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul P, Singh SK, Patra B, Liu X, Yuan L (2019) Mutually regulated AP2/ERF gene clusters modulate biosynthesis of specialized metabolites in plants. Plant Physiol 182:00772.02019

    Google Scholar 

  • Ping H, Warren RF, Zhao T, Shan L, Zhou JM (2001) Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 14:1453–1457

    Article  Google Scholar 

  • Qin L, Wang L, Guo Y, Li Y, Ümüt H, Wang Y (2017) An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance. Plant Sci 265:154–166

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166(3):1634–1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Lumbreras V, Lopez C, Dominguez-Puigjaner E, Kizis D, Pagès M (2010) Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses. Plant J 46:747–757

    Article  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci 97(21):11655–11660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, Segundo BS, Guiderdoni E, Schippers J (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Peng X, Fan W, Tang M, Liu J, Shen S (2014) Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 535:140–149

    Article  CAS  PubMed  Google Scholar 

  • Van VH, Akman M, Jamar DC, Vreugdenhil D, Kooiker M, Van TP, Voesenek LA, Schranz ME, Sasidharan R (2015) Group VII Ethylene Response Factor diversification and regulation in four species from flood-prone environments. Plant Cell Environ 37:2421–2432

    Article  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan L, Wu Y, Huang J, Dai X, Lei Y (2014) Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct Integr Genom 14(3):467–477

    Article  CAS  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie ZL, Nolan T, Jiang H, Tang BY, Zhang MC, Li ZH, Yin YH (2019) The AP2/ERF transcription factor TINY modulates brassinosteroid regulated plant growth and drought responses in Arabidopsis. Plant Cell 31:1788–1806

  • Xing L, Di Z, Yang W, Liu J, Li M, Wang X, Cui C, Wang X, Wang X, Zhang R (2017) Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses. Front Plant Sci 8:1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Zx CM, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement F. J Integr Plant Biol 53(7):570–585

    Article  Google Scholar 

  • Xue GP, Loveridge CW (2010) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  Google Scholar 

  • Yu Y, Yang D, Zhou S, Gu J, Wang F, Dong J, Huang R (2017) The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254:401–408

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Fritschi FB, Mittler R (2021) Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci 26:588–599

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Sengupta S, Fritschi FB, Azad RK, Nechushtai R, Mittler R (2021) The impact of multifactorial stress combination on plant growth and survival. New Phytol 230:1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarei A, Körbes A, Younessi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75:321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li A, Zhang Z, Huang Z, Lu P, Zhang D, Liu X, Zhang ZF, Huang R (2016) Ethylene response factor TERF1, regulated by ETHYLENE-INSENSITIVE3-like factors, functions in reactive oxygen species (ROS) scavenging in tobacco (Nicotiana tabacum L.). Sci Rep 6:29948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zhang ZL, Park J, Tyler L, Yusuke J, Qiu K, Nam EA, Lumba S, Desveaux D, Mccourt P (2016) The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling. Plant Physiol 171:2760–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhang H, Yang Y, Zhang Z, Zhang H, Hu X, Chen J, Wang XC, Huang R (2008) Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J Exp Bot 59:645–652

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, Li J, Wei X, Zhang Z (2014) The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol 164(3):1499–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Science and Technology Department of Sichuan Province (Nos. 467630) and the Fundamental Research Funds of China West Normal University (Nos. 412837).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.D.; writing, review and editing, W.D. and N.S.M.; funding acquisition, W.D. and N.S.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Dan Wang.

Ethics declarations

Competing Interest

The authors declare no conflict of interest.

Additional information

Communicated by: Ray Ming

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, S., Wang, D. AP2/ERF Transcription Factors for Tolerance to Both Biotic and Abiotic Stress Factors in Plants. Tropical Plant Biol. 16, 105–112 (2023). https://doi.org/10.1007/s12042-023-09339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-023-09339-9

Keywords

Navigation