Skip to main content

Advertisement

Log in

Mitochondrial dysfunction in protein conformational disorders

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Protein aggregation is a hallmark of many neurodegenerative diseases. In Parkinson’s disease protein misfolding of \(\upalpha \)-synuclein involves conformational changes in the protein structure that often results in self-association and aggregation leading to accumulation of \(\upalpha \)-synuclein in neuronal cells. The underlying mechanisms by which aggregations can lead to impaired cellular functions are often not understood. Meanwhile, there is growing evidence that links mitochondrial dysfunction to Parkinson’s disease. As both mitochondria and protein aggregation of \(\upalpha \)-synuclein have been shown to play a major role in Parkinson’s disease, it seems likely that a converging mechanism exists that links the two pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abeliovich A., Schmitz Y., Fariñas I., Choi-Lundberg D., Ho W. H., Castillo P. E. et al. 2000 Mice lacking \(\upalpha \)-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Appel-Cresswell S., Vilarino-Guell C., Encarnacion M., Sherman H., Yu I., Shah B. et al. 2013 Alpha-synuclein p. H50Q a novel pathogenic mutation for Parkinson’s disease. Mov. Disord. 28, 811–813.

    Article  PubMed  CAS  Google Scholar 

  • Bendor J. T., Logan T. P. and Edwards R. 2013 The function of \(\upalpha \)-synuclein. Neuron 79, 1044–1066.

    Article  PubMed  CAS  Google Scholar 

  • Bertholet A. M., Delerue T., Millet A. M., Moulis M. F., David C., Daloyau M. et al. 2016 Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol. Dis. 90, 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R., Sherer T. B., MacKenzie G., Garcia-Osuna M., Panov A. V. and Greenamyre J. T. 2000 Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci. 3, 1301.

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R., Canet-Aviles R. M., Sherer T. B., Mastroberardino P. G., McLendon C., Kim J. H. et al. 2006 Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1 \(\upalpha \)-synuclein and the ubiquitin–proteasome system. Neurobiol. Dis22, 404–420.

    Article  PubMed  CAS  Google Scholar 

  • Biosa A., Sandrelli F., Beltramini M., Greggio E., Bubacco L. and Bisaglia M. 2017 Recent findings on the physiological function of DJ-1: Beyond Parkinson’s disease. Neurobiol. Dis108, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Bonifati V., Rizzu P., Van Baren M. J., Schaap O., Breedveld G. J. et al. 2003 Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259.

    Article  PubMed  CAS  Google Scholar 

  • Braschi E., Goyon V., Zunino R., Mohanty A., Xu L. and McBride H. M. 2010 Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310–1315.

    Article  PubMed  CAS  Google Scholar 

  • Breydo L., Wu J. W. and Uversky V. N. 2012 \(\upalpha \)-Synuclein misfolding and Parkinson’s disease. Biochim. Biophys. Acta 1822, 261–285.

    Article  PubMed  CAS  Google Scholar 

  • Brielle S., Gura R. and Kaganovich D. 2015 Imaging stress. Cell Stress Chaperones 20, 867–874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burré J. 2015 The synaptic function of \(\upalpha \)-synuclein. J. Parkinson Dis. 5, 699–713.

    Article  CAS  Google Scholar 

  • Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M. R. and Südhof T. C. 2010 \(\upalpha \)-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burté F., Carelli V., Chinnery P. F. and Yu-Wai-Man P. 2015 Disturbed mitochondrial dynamics and neurodegenerative disorders. Nature Rev. Neurol. 11, 11.

    Article  CAS  Google Scholar 

  • Cabin D. E., Shimazu K., Murphy D., Cole N. B., Gottschalk W., McIlwain K. L. et al. 2002 Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking \(\upalpha \)-synuclein. J. Neurosci. 22, 8797–8807.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Canet-Avilés R. M., Wilson M. A., Miller D. W., Ahmad R., McLendon C. Bandyopadhyay S. et al. 2004 The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl. Acad. Sci. USA 101, 9103–9108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan N. C., Salazar A. M., Pham A. H., Sweredoski M. J., Kolawa N. J., Graham R. L. et al. 2011 Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726–1737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H., Detmer S. A., Ewald A. J., Griffin E. E., Fraser S. E. and Chan D. C. 2003 Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng H. C., Ulane C. M. and Burke R. E. 2010 Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67, 715–725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choubey V., Safiulina D., Vaarmann A., Cagalinec M., Wareski P., Kuum M. et al. 2011 Mutant A53T \(\upalpha \)-synuclein induces neuronal death by increasing mitochondrial autophagy. J. Biol. Chem. 286, 10814–10824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conway K. A., Lee S. J., Rochet J. C., Ding T. T., Williamson R. E. and Lansbury P. T. 2000 Acceleration of oligomerization not fibrillization is a shared property of both \(\upalpha \)-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Conway K. A. Rochet J. C. Bieganski R. M. and Lansbury P. T. 2001 Kinetic stabilization of the \(\upalpha \)-synuclein protofibril by a dopamine-\(\upalpha \)-synuclein adduct. Science 294, 1346–1349.

    Article  PubMed  CAS  Google Scholar 

  • Cremades N., Cohen S. I., Deas E., Abramov A. Y., Chen A. Y., Orte A. et al. 2012 Direct observation of the interconversion of normal and toxic forms of \(\upalpha \)-synuclein. Cell 149, 1048–1059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dauer W. and Przedborski S. 2003 Parkinson’s disease: mechanisms and models. Neuron 39, 889–909.

    Article  PubMed  CAS  Google Scholar 

  • Davidson W. S., Jonas A., Clayton D. F. and George J. M. 1998 Stabilization of \(\upalpha \)-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.

    Article  PubMed  CAS  Google Scholar 

  • Desplats P., Lee H. J., Bae E. J., Patrick C., Rockenstein E., Crews L. et al. 2009 Inclusion formation and neuronal cell death through neuron-to-neuron transmission of \(\upalpha \)-synuclein. Proc. Natl. Acad. Sci. USA 106, 13010–13015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi L., Raghavendran V., Prabhu B. M., Avadhani N. G. and Anandatheerthavarada H. K. 2008 Mitochondrial import and accumulation of \(\upalpha \)-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283, 9089–9100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Maio R., Barrett P. J., Hoffman E. K., Barrett C. W., Zharikov A. Borah A. et al. 2016 \(\upalpha \)-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med. 8, 342ra78–342ra78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dijkstra A. A., Voorn P., Berendse H. W., Groenewegen H. J., Rozemuller A. J. and Berg W. D. 2014 Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Mov. Disord. 29, 1244–1251.

    Article  PubMed  Google Scholar 

  • Drin G. and Antonny B. 2010 Amphipathic helices and membrane curvature. FEBS Lett. 584, 1840–1847.

    Article  PubMed  CAS  Google Scholar 

  • Eliezer D., Kutluay E., Bussell Jr R. and Browne G. 2001 Conformational properties of \(\upalpha \)-synuclein in its free and lipid-associated states1. J. Mol. Biol. 307, 1061–1073.

    Article  PubMed  CAS  Google Scholar 

  • Farrer M., Vrieze W. D., Crook R., Boles L., Perez-Tur J., Hardy J. et al. 1998 Low frequency of \(\upalpha \)-synuclein mutations in familial Parkinson’s disease. Ann. Neurol. 43, 394–397.

    Article  PubMed  CAS  Google Scholar 

  • Farrer M., Kachergus J., Forno L., Lincoln S., Wang D. S., Hulihan M. et al. 2004 Comparison of kindreds with parkinsonism and \(\upalpha \)-synuclein genomic multiplications. Ann. Neurol. 55, 174–179.

    Article  PubMed  CAS  Google Scholar 

  • Farrer M. J. 2006 Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7, 306.

    Article  PubMed  CAS  Google Scholar 

  • Feany M. B. and Bender W. W. 2000 A Drosophila model of Parkinson’s disease. Nature 404, 394.

    Article  PubMed  CAS  Google Scholar 

  • Giasson B. I., Murray I. V., Trojanowski J. Q. and Lee V. M. Y. 2001 A hydrophobic stretch of 12 amino acid residues in the middle of \(\upalpha \)-synuclein is essential for filament assembly. J. Biol. Chem. 276, 2380–2386.

    Article  PubMed  CAS  Google Scholar 

  • Hao L. Y., Giasson B. I. and Bonini N. M. 2010 DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc. Natl. Acad. Sci. USA 107, 9747–9752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollenbeck P. J. 2005. Mitochondria and neurotransmission: evacuating the synapse. Neuron 47, 331–333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin S. M., Lazarou M., Wang C., Kane L. A., Narendra D. P. and Youle R. J. 2010 Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jo E., McLaurin J., Yip C. M., George-Hyslop P. S. and Fraser P. E. 2000 \(\upalpha \)-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34328–34334.

    Article  PubMed  CAS  Google Scholar 

  • Johnson J., Hague S. M., Hanson M., Gibson A., Wilson K. E., Evans E. W. et al. 2004 SNCA multiplication is not a common cause of Parkinson disease or dementia with Lewy bodies. Neurology 63, 554–556.

    Article  PubMed  CAS  Google Scholar 

  • Kaganovich D. 2017 There is an inclusion for that: material properties of protein granules provide a platform for building diverse cellular functions. Trends Biochem. Sci. 42, 765–776.

    Article  PubMed  CAS  Google Scholar 

  • Kaganovich D., Kopito R. and Frydman J. 2008 Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamp F., Exner N., Lutz A. K., Wender N., Hegermann J., Brunner B. et al. 2010 Inhibition of mitochondrial fusion by \(\upalpha \)-synuclein is rescued by PINK1 Parkin and DJ-1. EMBO J. 29, 3571–3589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kann O. and Kovács R. 2007 Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 292, C641–C657.

    Article  PubMed  CAS  Google Scholar 

  • Khandelia H., Ipsen J. H. and Mouritsen O. G. 2008 The impact of peptides on lipid membranes. Biochim. Biophys. Acta. 1778, 1528–1536.

    Article  PubMed  CAS  Google Scholar 

  • Krüger R., Kuhn W., Müller T., Woitalla D., Graeber M. Sigfried K. et al. 1998 AlaSOPro mutation in the gene encoding \(\upalpha \)-synuclein in Parkinson’s disease. Nat. Genet. 18, 101–108.

    Article  Google Scholar 

  • Kuwahara T., Koyama A., Gengyo-Ando K., Masuda M., Kowa H., Tsunoda M. et al. 2006 Familial Parkinson mutant \(\upalpha \)-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J. Biol. Chem. 281, 334–340.

    Article  PubMed  CAS  Google Scholar 

  • Langston J. W., Ballard P., Tetrud J. W. and Irwin I. 1983 Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel H. A., Overk C. R., Oueslati A. and Masliah E. 2013 The many faces of \(\upalpha \)-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lázaro D. F., Rodrigues E. F., Langohr R., Shahpasandzadeh H., Ribeiro T., Guerreiro P. et al. 2014 Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet. 10, e1004741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S. J., Kim S. J., Kim I. K., Ko J., Jeong C. S., Kim et al. 2003 Crystal structures of human DJ-1 and Escherichia coli Hsp31 which share an evolutionarily conserved domain. J. Biol. Chem. 278, 44552–44559.

    Article  PubMed  CAS  Google Scholar 

  • Lesage S., Anheim M., Letournel F., Bousset L., Honoré A., Rozas N. et al. 2013 G51D \(\upalpha \)-synuclein mutation causes a novel Parkinsonian–pyramidal syndrome. Ann. Neurol. 73, 459–471.

    Article  PubMed  CAS  Google Scholar 

  • Li W. W., Yang R., Guo J. C., Ren H. M., Zha X. L., Chenget al. 2007 Localization of \(\upalpha \)-synuclein to mitochondria within midbrain of mice. Neuroreport 18, 1543–1546.

    Article  PubMed  CAS  Google Scholar 

  • Lin M. T. and Beal M. F. 2006 Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787.

    Article  PubMed  CAS  Google Scholar 

  • Martin L. J., Pan Y., Price A. C., Sterling W., Copeland N. G., Jenkins et al. 2006 Parkinson’s disease \(\upalpha \)-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 41–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Masliah E., Rockenstein E., Veinbergs I., Mallory M., Hashimoto M., Takeda A. et al. 2000 Dopaminergic loss and inclusion body formation in \(\upalpha \)-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  • Michel P. P., Hirsch E. C. and Hunot S. 2016 Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90, 675–691.

    Article  PubMed  CAS  Google Scholar 

  • Moscovitz O., Ben-Nissan G., Fainer I., Pollack D., Mizrachi L. and Sharon M. 2015 The Parkinson’s-associated protein DJ-1 regulates the 20S proteasome. Nat. Commun. 6, 6609.

    Article  PubMed  CAS  Google Scholar 

  • Murphy D. D., Rueter S. M., Trojanowski J. Q. and Lee V. M. Y. 2000 Synucleins are developmentally expressed and \(\upalpha \)-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214–3220.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakamura K. 2013 \(\upalpha \)-Synuclein and mitochondria: partners in crime? Neurotherapeutics 10, 391–399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura K., Nemani V. M., Azarbal F., Skibinski G., Levy J. M., Egami K. et al. 2011 Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein \(\upalpha \)-synuclein. J. Biol. Chem. 286, 20710–20726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narendra D., Tanaka A., Suen D. F. and Youle R. J. 2008 Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemani V. M., Lu W., Berge V., Nakamura K., Onoa B., Lee M. K. et al. 2010 Increased expression of \(\upalpha \)-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen H. N., Byers B., Cord B., Shcheglovitov A., Byrne J., Gujar P. et al. 2011 LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicklas W. J., Youngster S. K., Kindt M. V. and Heikkila R. E. 1987 IV. MPTP MPP+ and mitochondrial function. Life Sci. 40, 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum R. L. 2017 The identification of alpha-synuclein as the first Parkinson disease gene. J. Parkinsons Dis. 7(s1), S43–S49.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oikawa T., Nonaka T., Terada M., Tamaoka A., Hisanaga S. I. and Hasegawa M. 2016 \(\upalpha \)-Synuclein fibrils exhibit gain of toxic function promoting tau aggregation and inhibiting microtubule assembly. J. Biol. Chem. 291, 15046–15056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orenstein S. J., Kuo S. H., Tasset I., Arias E., Koga H., Fernandez-Carasa I. et al. 2013 Interplay of LRRK2 with chaperone-mediated autophagy. Nat. Neurosci. 16, 394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paillusson S., Stoica R., Gomez-Suaga P., Lau D. H., Mueller S., Miller T. et al. 2016 There’s something wrong with my MAM; the ER–mitochondria axis and neurodegenerative diseases. Trends Neurosci. 39, 146–157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Payton J. E., Perrin R. J., Woods W. S. and George J. M. 2004 Structural determinants of PLD2 inhibition by \(\upalpha \)-synuclein. J. Mol. Biol. 337, 1001–1009.

    Article  PubMed  CAS  Google Scholar 

  • Pickrell A. M. and Youle R. J. 2015 The roles of PINK1 parkin and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pineda A. and Burré J. 2017 Modulating membrane binding of \(\upalpha \)-synuclein as a therapeutic strategy. Proc. Nat. Acad. Sci. USA 114, 1223–1225.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poewe W., Seppi K., Tanner C. M., Halliday G. M., Brundin P. Volkmann J. et al. 2017 Parkinson disease. Nat. Rev. Dis. Primers 3, 17013.

    Article  PubMed  Google Scholar 

  • Polymeropoulos M. H., Higgins J. J., Golbe L. I., Johnson W. G., Ide S. E., Di Iorioet al. 1996 Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274, 1197–1199.

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A. et al. 1997 Mutation in the \(\upalpha \)-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Poole A. C., Thomas R. E., Andrews L. A., McBride H. M., Whitworth A. J. and Pallanck L. J. 2008 The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Nat. Acad. Sci. USA 105, 1638–1643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan L., Zhou C., Jin E., Kucharavy A., Zhang Y., Wen Z. et al. 2017 Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarraf S. A., Raman M., Guarani-Pereira V., Sowa M. E., Huttlin E. L., Gygi S. P. et al. 2013 Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrepfer E. and Scorrano L. 2016 Mitofusins from mitochondria to metabolism. Mol. Cell 61, 683–694.

    Article  PubMed  CAS  Google Scholar 

  • Shendelman S., Jonason A., Martinat C., Leete T. and Abeliovich A. 2004 DJ-1 is a redox-dependent molecular chaperone that inhibits \(\upalpha \)-synuclein aggregate formation. PLoS Biol. 2, p.e362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singleton A. B., Farrer M., Johnson J., Singleton A., Hague S., Kacherguset al. 2003 \(\upalpha \)-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841.

    Article  PubMed  CAS  Google Scholar 

  • Smirnova E., Shurland D. L., Ryazantsev S. N. and van der Bliek A. M. 1998 A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351–358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spillantini M. G., Schmidt M. L., Lee V. M. Y., Trojanowski J. Q., Jakes R. and Goedert M. 1997 \(\upalpha \)-Synuclein in Lewy bodies. Nature 388, 839.

    Article  PubMed  CAS  Google Scholar 

  • Stafa K., Tsika E., Moser R., Musso A., Glauser L., Jones A. et al. 2013 Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum. Mol. Genet. 23. 2055–2077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taira T., Saito Y., Niki T., Iguchi-Ariga S. M., Takahashi K. and Ariga H. 2004 DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5, 213–218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka M., Kim Y. M., Lee G., Junn E., Iwatsubo T. and Mouradian M. M. 2004. Aggresomes formed by \(\upalpha \)-synuclein and synphilin-1 are cytoprotective. J. Biol. Chem. 279, 4625–4631.

    Article  PubMed  CAS  Google Scholar 

  • Tang F. L., Erion J. R., Tian Y., Liu W., Yin D. M., Ye J. et al. 2015 VPS35 in dopamine neurons is required for endosome-to-Golgi retrieval of Lamp2a a receptor of chaperone-mediated autophagy that is critical for \(\upalpha \)-synuclein degradation and prevention of pathogenesis of Parkinson’s disease. J. Neurosci. 35, 10613–10628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas K. J., McCoy M. K., Blackinton J., Beilina A., van der Brug M., Sandebring A. et al. 2010 DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet. 20, 40–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trinh J. and Farrer M. 2013 Advances in the genetics of Parkinson disease. Nat. Rov. Neurol. 9, 445.

    Article  CAS  Google Scholar 

  • Ulmer T. S., Bax A., Cole N. B. and Nussbaum R. L 2005 Structure and dynamics of micelle-bound human \(\upalpha \)-synuclein. J. Biol. Chem. 280, 9595–9603.

    Article  PubMed  CAS  Google Scholar 

  • Uversky V. N. 2007 Neuropathology biochemistry and biophysics of \(\upalpha \)-synuclein aggregation. J. Neurochem. 103, 17–37.

    PubMed  CAS  Google Scholar 

  • Wang W., Wang X., Fujioka H., Hoppel C., Whone A. L., Caldwell M. A. 2016 Parkinson’s disease–associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat. Med. 22, 54.

    Article  PubMed  CAS  Google Scholar 

  • Wang X., Yan M. H., Fujioka H., Liu J., Wilson-Delfosse A., Chen S. G. et al. 2012 LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. 21, 1931–1944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westermann B. 2010 Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872.

    Article  PubMed  CAS  Google Scholar 

  • Williams E. T., Chen X. and Moore D. J. 2017 VPS35 the retromer complex and Parkinson’s disease. J. Parkinsons Dis. 7, 219–233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson M. A. 2011 The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid. Redox Signal. 15, 111–122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wood S. J., Wypych J., Steavenson S., Louis J. C., Citron M. and Biere A. L. 1999 \(\upalpha \)-Synuclein fibrillogenesis is nucleation-dependent implications for the pathogenesis of Parkinson\(\prime \) s disease. J. Biol. Chem. 274, 19509–19512.

    Article  PubMed  CAS  Google Scholar 

  • Xie W. and Chung K. K. 2012 Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson’s disease. J. Neurochem. 122, 404–414.

    Article  PubMed  CAS  Google Scholar 

  • Yamano K. and Youle R. J. 2013 PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarranz J. J., Alegre J., Gómez-Esteban J. C., Lezcano E., Ros R. Ampuero I. et al. 2004 The new mutation E46K of \(\upalpha \)-synuclein causes parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Zheng B., Liao Z., Locascio J. J., Lesniak K. A., Roderick S. S., Watt M. L. et al. 2010 PGC-1\(\upalpha \) a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med. 2, 52ra73–52ra73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou W., Zhu M., Wilson M. A., Petsko G. A. and Fink A. L. 2006 The oxidation state of DJ-1 regulates its chaperone activity toward \(\upalpha \)-synuclein. J. Mol. Biol. 356, 1036–1048.

    Article  PubMed  CAS  Google Scholar 

  • Zondler L., Miller-Fleming L., Repici M., Gonçalves S., Tenreiro S., Rosado-Ramos R. et al. 2014 DJ-1 interactions with \(\upalpha \)-synuclein attenuate aggregation and cellular toxicity in models of Parkinson’s disease. Cell Death Dis. 5, e1350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shlomi Brielle or Daniel Kaganovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brielle, S., Kaganovich, D. Mitochondrial dysfunction in protein conformational disorders. J Genet 97, 703–713 (2018). https://doi.org/10.1007/s12041-018-0958-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0958-0

Keywords

Navigation