Skip to main content

Advertisement

Log in

Whitefly and aphid inducible promoters of Arabidopsis thaliana L.

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Lack of regulated expression and tissue specificity are the major drawbacks of plant and virus-derived constitutive promoters. A precise tissue or site-specific expression, facilitate regulated expression of proteins at the targeted time and site. Publically available microarray data on whitefly and aphid infested Arabidopsis thaliana L. was used to identify whitefly and aphid-inducible genes. The qRT-PCR further validated the inducible behaviour of these genes under artificial infestation. Promoter sequences of genes were retrieved from the Arabidopsis Information Resources database with their corresponding \(5^\prime \hbox {UTR}\) and cloned from the A. thaliana genome. Promoter reporter transcriptional fusions were developed with the beta-glucuronidase (GUS) gusA gene in a binary expression vector to validate the inducible behaviour of these promoters in eight independent transgenic Nicotiana tabaccum lines. Histochemical analysis of the reporter gene in \(\hbox {T}_{2}\) transgenic tobacco lines confirmed promoter driven expression at the sites of aphid and whitefly infestation. The qRT-PCR and GUS expression analysis of transgenic lines revealed that abscisic acid largely influenced the expression of both aphid and whitefly inducible promoters. Further, whitefly-specific promoter respond to salicylic acid and jasmonic acid (JA), whereas aphid-specific promoters to JA and 1-aminocyclopropane carboxylic acid. The response of promoters to phytohormones correlated to the presence of corresponding conserved cis-regulatory elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe H., Yamaguchi-Shinozaki K., Urao T., lwasaki T., Hosokawa C. D. and Shinozaki K. 1997 Role of arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell 9, 1859–1868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abe H., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K. 2003 Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An Y. Q., McDowell J. M., Huang S., McKinney E. C., Chambliss S. and Meagher R. B. 1996 Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J. 10, 107–121.

    Article  CAS  PubMed  Google Scholar 

  • Bai X., Zhang W., Orantes L., Jun T. H., Mittapalli O., Mian M. A. R. and Michel A. P. 2010 Combining next-generation sequencing strategies for rapid molecular resource development from an invasive aphid species, Aphis glycines. PLoS One 5, e11370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodersen P., Malinovsky F. G., Hematy K., Newman M. A. and Mundy J. 2005 The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol. 138, 1037–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborti D., Sarkar A., Mondal H. A. and Das S. 2009 Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res. 18, 529–544.

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi C. P., Sawant S. V., Kiran K., Mehrotra R., Lodhi N., Ansari S. A. and Tuli R. 2006 Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J. Biotechnol. 123, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi C. P., Lodhi N., Ansari S. A., Tiwari S., Srivastava R., Sawant S. V. and Tuli R. 2007 Mutated TATA-box/TATA binding protein complementation system for regulated transgene expression in tobacco. Plant J. 50, 917–925.

    Article  CAS  PubMed  Google Scholar 

  • Christensen A. H., Sharrock R. A. and Quail P. H. 1992 Maize poly ubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689.

    Article  CAS  PubMed  Google Scholar 

  • Choi H., Hong J. H., Ha J., Kang J. Y. and Kim S. Y. 1999 ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275, 1723–1730.

    Article  Google Scholar 

  • Couldridge C., Newbury H. J., Ford-Lloyd B., Bale J. and Pritchard J. 2007 Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. Bull. Entomol. Res. 97, 523–532.

    Article  CAS  PubMed  Google Scholar 

  • De Vos M., Oosten V. R., Van Poecke R. M. P., Van Pelt J. A., Pozo M. J., Mueller M. J. et al. 2005 Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant Microbe Interact. 18, 923–937.

    Article  PubMed  Google Scholar 

  • Dey N. and Maiti I. B. 1999 Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol. Biol. 40, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Doyle M. R., Bizzell C. M., Keller M. R., Michaels S. D., Song J., Noh Y. S. and Amasino R. M. 2005 HUA2 is required for the expression of floral repressors in Arabidopsis thaliana. Plant J. 41, 376–385.

    Article  CAS  PubMed  Google Scholar 

  • Dubey N. K., Goel R., Ranjan A., Idris A., Singh S. K., Bagh S. K., et al. 2013 Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genomics 14, 241.

  • Fujita M., Mizukado S., Fujita Y., Ichikawa T., Nakazawa M., Seki M. et al. 2007 Identification of stress tolerance related transcription factor genes via mini scale Full length cDNA over expressor (FOX) gene hunting system. Biochem. Biophys. Res. Commun. 364, 250–257.

    Article  CAS  PubMed  Google Scholar 

  • Graaff V. D. E., Schwacke R., Schneider A., Desimone M., Flogge U. I. and Kunze R. 2006 Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol. 141, 776–792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo H., Chen X., Zhang H., Fang R., Yuan Z., Zhang Z. and Tian Y. 2004 Characterization and activity enhancement of the phloem-specific pumpkin PP2 gene promoter. Transgenic Res. 13, 559–566.

    Article  CAS  PubMed  Google Scholar 

  • Guo H., Sun Y., Peng X., Wang Q., Harris M. and Ge F. 2016 Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress. J. Exp. Bot. 67, 681–693.

    Article  CAS  PubMed  Google Scholar 

  • Higo K., Ugawa Y., Iwamoto M. and Korenaga T. 1999 Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27, 297–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horner G. W., Tham K. M., Orr D., Ralston J., Rowe S. and Houghton T. 1995 Comparison of an antigen capture enzyme-linked assay with reverse transcription polymerase chain reaction and cell culture immunoperoxidase tests for the diagnosis of ruminant pestivirus infections. Vet. Microbiol. 43, 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Horsch R. B., Fry J. E., Hoffmann N. L., Eichholtz D., Rogers S. G. and Fraley R. T. 1985 A simple and general method for transferring genes into plants. Science 227, 1229–1231.

    Article  CAS  Google Scholar 

  • Huang D., Wu W., Abrams S. R. and Cutler A. J. 2008 The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J. Exp. Bot. 59, 2991–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempema L. A., Cui X., Holzer F. M. and Walling L. L. 2007 Arabidopsis transcriptome changes in response to phloem-feeding silver leaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol. 143, 849–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna R., Kikis E. A. and Quail P. H. 2003 EARLY FLOWERING 4 Functions in phytochrome B regulated seedling de-etiolation. Plant Physiol. 133, 1530–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y., Lim J., Yeom M., Kim H., Kim J., Wang L., et al. 2013 ELF4 regulates GIGANTEA chromatin access through sub nuclear sequestration. Cell Rep. 28, 671–677.

    Article  Google Scholar 

  • Kiran K., Ansari S. A., Srivastava R., Lodhi N., Chaturvedi C. P., Sawant S. V. et al. 2006 The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants. Plant Physiol. 142, 364–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloti A., He X., Potrykus I., Hohn T. and Futterer J. 2002 Tissue-specific silencing of a transgene in rice. Proc. Natl. Acad. Sci. USA 99, 10881–10886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2\(^{-\Delta \Delta \text{ CT }}\) method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lodhi N., Ranjan A., Singh M., Srivastava R., Singh S. P., Chaturvedi C. P. et al. 2008 Interactions between upstream and core promoter sequences determine gene expression and nucleosome positioning in tobacco PR-1a promoter. Biochim. Biophys. Acta. 1779, 634–644.

    Article  CAS  PubMed  Google Scholar 

  • Maiti I. B., Gowda S., Kiernan J., Ghosh S. K. and Shepherd R. J. 1997 Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res. 6, 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Mandadi K. K., Misra A., Ren S. and McKnight T. D. 2009 BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiol. 150, 1930–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda Y., Liang G., Zhu Y., Ma F., Nelson R. S. and Ding B. 2002 The Commelina yellow mottle virus promoter drives companion-cell-specific gene expression in multiple organs of transgenic tobacco. Protoplasma 220, 51–58.

    Article  CAS  PubMed  Google Scholar 

  • McElroy D., Blowers A. D., Jenes B. and Wu R. 1991 Construction of expression vectors based on the rice actin 1 (Act1) 5\(^\prime \) region for use in monocot transformation. Mol. Gen. Genet. 231, 150–160.

    Article  CAS  Google Scholar 

  • Mishina T. E. and Zeier J. 2006 The Arabidopsis flavin-dependent mono oxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol. 141, 1666–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikos K., Yannick P., Ritika C., Ian D., David N. and Chris B. 2011 Pyro-sequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics 12, 1–14.

    Article  Google Scholar 

  • Odell J. T., Nagy F. and Chua N. H. 1985 Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810–812.

    Article  CAS  PubMed  Google Scholar 

  • Onate-Sanchez L. and Singh K. B. 2002 Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 128, 1313–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse C. M. J., VanWees S. C. M., Hoffland E., vanPelt J. A. and vanLoon L. C. 1996 Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8, 1225–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plesse B., Criqui M. C., Durr A., Parmentier Y., Fleck J. and Genschik P. 2001 Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol. Biol. 45, 655–667.

    Article  CAS  PubMed  Google Scholar 

  • Potenza C., Aleman L. and Sengupta-Gopalan C. 2004 Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev. Biol. Plant. 40, 1–22.

    Article  CAS  Google Scholar 

  • Ren S., Mandadi K. K., Boedeker A. L., Rathore K. S. and McKnight T. D. 2007 Regulation of telomerase in Arabidopsis by BT2, an apparent target of telomerase activator1. Plant Cell 19, 23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert H. S., Quint A., Brand D., Viviana-Smith A. and Offringa R. 2009 BTB and TAZ DOMAIN scaffold proteins perform a crucial function in Arabidopsis development. Plant J. 58, 109–121.

    Article  CAS  PubMed  Google Scholar 

  • Saha P., Chakraborti D., Sarkar A., Dutta I., Basu D. and Das S. 2007 Characterization of vascular-specific RSs1 and rolC promoters for their utilization in engineering plants to develop resistance against hemipteran insect pests. Planta 226, 429–442.

    Article  CAS  PubMed  Google Scholar 

  • Sanger M., Daubert S. and Goodman R. M. 1990 Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol. Biol. 14, 433–443.

    Article  CAS  PubMed  Google Scholar 

  • Schenk P. M., Remans T., Saqi L., Elliott A. R., Dietzgen R. G., Swennen R. et al. 2001 Promoters for pre-genomic RNA of banana streak badna virus are active for transgene expression in monocot and dicot plants. Plant Mol. Biol. 47, 399–412.

    Article  CAS  PubMed  Google Scholar 

  • Siemens J., Keller I., Sarx J., Kunz S., Schuller A., Nagel W. et al. 2006 Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol. Plant Microbe Interact. 19, 480–494.

    Article  CAS  PubMed  Google Scholar 

  • Simpson S. D., Nakashima K., Narusaka Y., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K. 2003 Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33, 259–270.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R., Rai K. M., Srivastava M., Kumar V., Pandey B., Singh S. P. et al. 2014 Distinct role of core promoter architecture in regulation of light-mediated responses in plant genes. Mol. Plant 7, 626–641.

    Article  CAS  PubMed  Google Scholar 

  • Staal M., De Cnodder T., Simon D., Vandenbussche F., Van Der Straeten D., Verbelen J. P. et al. 2011 Apoplastical kalinization is instrumental for the inhibition of cell elongation in the Arabidopsis root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Plant Physiol. 155, 2049–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakar D., Fu X., Stoger E., Williams S., Spence J., Brown D. P. et al. 1998 Expression and immune-localisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Res. 7, 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S., Mishra D. K., Singh A., Singh P. K. and Tuli R. 2008 Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep. 27, 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay S. K., Chandrashekar K., Thakur N., Verma P. C., Borgio J. F., Singh P. K., and Tuli R. 2011 RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J. Biosci. 36, 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Urao T., Yamaguchi-Shinozaki K., Urao S. and Shinozaki K. 1993 An arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5, 1529–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdaguer B., de Kochko A., Fux C. I., Beachy R. N. and Fauquet C. 1998 Functional organization of the cassava vein mosaic virus (CsVMV) promoter. Plant Mol. Biol. 37, 1055–1067.

    Article  CAS  PubMed  Google Scholar 

  • Yang N. S. and Russell D. 1990 Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 87, 4144–4148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D., Chen C. and Chen Z. 2001 Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13, 1527–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W., McElroy D. and Wu R. 1991 Analysis of rice Act1 5\(^\prime \) region activity in transgenic rice plants. Plant Cell 3, 1155–1165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y., Xu W., Li Z., Deng X. W., Wu W. and Xue Y. 2008a F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol. 148, 2121–2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z., Lenk A., Andersson M. X., Gjetting T., Pedersen C., Nielsen M. E et al. 2008b A lesion-mimic syntaxin double mutant in Arabidopsis reveals novel complexity of pathogen defense signaling. Mol. Plant 1, 510–527.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NKD, DKM and DN are grateful to the Council of Scientific and Industrial Research (CSIR), India, for providing the research fellowship. This work was supported under the Council of Scientific and Industrial Research Network Project (NWP03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir V. Sawant.

Additional information

Corresponding editor: Arun Joshi

NKD performed qRT-PCR, promoter cloning and transgenic analysis, and drafted this article. DN performed microarray data analysis. DKM and AI helped in transgenic development and lab experiments. PKS revised the manuscript. SVS conceived the study, participated in its design and coordination of work, data analysis and interpretation, and revised the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pptx 350 KB)

Supplementary material 2 (xlsx 412 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, N.K., Mishra, D.K., Idris, A. et al. Whitefly and aphid inducible promoters of Arabidopsis thaliana L.. J Genet 97, 109–119 (2018). https://doi.org/10.1007/s12041-018-0887-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0887-y

Keywords

Navigation