Skip to main content
Log in

An updated homogeneous earthquake catalogue and earthquake recurrence parameters of Maharashtra state, an Indian stable continental region

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This study aims to assess the earthquake recurrence parameters (ERP), which are considered as an essential input for probabilistic seismic hazard analysis (PSHA) and other studies related to seismology. The earthquake catalogue is compiled by collecting historical and instrumental earthquake events from various sources. New regression relations are developed for the study region to prepare a homogenised earthquake catalogue. Moreover, seven seismic source zones are delineated for the study region through K-mean clustering analysis, utilising earthquake events from the homogenised earthquake catalogue. After conducting a declustering analysis, two separate earthquake catalogues, namely C2 and C3, are prepared to evaluate the influence of declustering on seismicity parameters compared to the homogenised earthquake catalogue (C1). Specific seismic events are extracted from the catalogue with respect to each zone to conduct a completeness analysis. Finally, three distinct sets of ERP are estimated for each zone, corresponding to each earthquake catalogue. Based on the results obtained, the b-value is determined to be within the range of 0.61–0.89 for the Maharashtra state. Significant variations in the b values corresponding to C2 and C3 are also noted compared to those associated with C1. Additionally, the current study also involves a sensitivity analysis to assess the effect of these parameters on the outcomes of PSHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Aki K 1966 Generation and propagation of G waves from the Niigata earthquake of June 16, 1964: Part 2. Estimation of earthquake movement, released energy, and stress-strain drop from G wave spectrum; Bull. Earthq. Res. Inst. 44 23–88.

    Google Scholar 

  • Alam E and Dominey-Howes D 2016 A catalog of earthquakes between 810BC and 2012 for the Bay of Bengal; Nat. Hazards 81(3) 2031–2102.

    Article  Google Scholar 

  • Allen J R L 1986 Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentation basins; Sedim. Geol. 46 67–75.

    Article  Google Scholar 

  • Anbazhagan P, Bajaj K, Dutta N, Moustafa S S R and Al-Arifi N S N 2017 Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city; J. Earth Syst. Sci. 126 1–21.

    Article  Google Scholar 

  • Ansari A, Noorzad A and Zafarani H 2009 Clustering analysis of the seismic catalog of Iran; Comput. Geosci. 35 475–486.

    Article  Google Scholar 

  • Bahuguna A and Sil A 2018 Comprehensive seismicity, seismic sources and seismic hazard assessment of Assam, North East India; J. Earthq. Eng. 24(9) 1–44.

    Google Scholar 

  • Baro O, Kumar A and Ismail-Zadeh A 2018 Seismic hazard assessment of the Shillong Plateau, India; Geomatics Nat. Hazards Risk 9 841–861.

    Article  Google Scholar 

  • Borah N, Kumar A and Dhanotiya R 2021 Seismic source zonation for NE India on the basis of past EQs and spatial distribution of seismicity parameters; J. Seismol. 25(6) 1483–1506.

    Article  Google Scholar 

  • Castellaro S and Bormann P 2007 Performance of different regression procedures on the magnitude conversion problem; Bull. Seismol. Soc. Am. 97(4) 1167–1175.

    Article  Google Scholar 

  • Castellaro S, Mulargia F and Kagan Y Y 2006 Regression problems for magnitudes; Geophys. J. Int. 165(3) 913–930.

    Article  Google Scholar 

  • Chandra U 1977 Earthquakes of peninsular India – a seismotectonic study; Bull. Seismol. Soc. Am. 67 1387–1413.

    Google Scholar 

  • Chingtham P, Chopra S, Baskoutas I and Bansal B K 2014 An assessment of seismicity parameters in northwest Himalaya and adjoining regions; Nat. Hazards 71 1599–1616.

    Article  Google Scholar 

  • Chopra Anil K and Chakrabarti P 1973 The Koyna earthquake and the damage to Koyna Dam; Bull. Seismol. Soc. Am. 63(2) 381–397.

    Article  Google Scholar 

  • Crone A J, Machette M N and Bowman J R 1997 Episodic nature of earthquake activity in stable continental regions revealed by paleoseismicity studies of Australian and North American Quaternary faults; Aust. J. Earth Sci. 44 203–214.

    Article  Google Scholar 

  • Das R and Meneses C 2021 A unified moment magnitude earthquake catalog for northeast India; Geomatics Nat. Hazards Risk 12(1) 167–180.

    Article  Google Scholar 

  • Das R, Wason H R and Sharma M L 2011 Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude; Nat. Hazards 59(2) 801–810.

    Article  Google Scholar 

  • Das R, Wason H R and Sharma M L 2012 Magnitude conversion to unified moment magnitude using orthogonal regression relation; J. Asian Earth Sci. 50 44–51.

    Article  Google Scholar 

  • Das R, Wason H R and Sharma M L 2013 General orthogonal regression relations between body-wave and moment magnitudes; Seismol. Res. Lett. 84 219–224.

    Article  Google Scholar 

  • Das R, Sharma M L and Wason H R 2016 Probabilistic seismic hazard assessment for northeast India region; Pure Appl. Geophys. 173 2653–2670.

    Article  Google Scholar 

  • Gardner J K and Knopoff L 1974 Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?; Bull. Seismol. Soc. Am. 64 1633–1638.

    Article  Google Scholar 

  • Grünthal G 1985 The updated earthquake catalogue for the German Democratic Republic and adjacent areas-statistical data characteristics and conclusions for hazard assessment; In: 3rd International Symposium on the Analysis of Seismicity and on Seismic Risk (Prague 1985).

  • Gupta I D 2002 The state of the art in seismic hazard analysis; ISET J. Earthq. Technol. 39(4) 311–346.

    Google Scholar 

  • Gurjar N and Basu D 2022 On the declustering methods of seismic catalogue – an application over Indian subcontinent; J. Seismol. 26(5) 1077–1103.

    Article  Google Scholar 

  • Gutenberg B 1945a Amplitudes of surface waves and magnitudes of shallow earthquakes; Bull. Seismol. Soc. Am. 35 3–12.

    Article  Google Scholar 

  • Gutenberg B 1945b Amplitudes of P, PP, and S and magnitude of shallow earthquakes; Bull. Seismol. Soc. Am. 35 57–69.

    Article  Google Scholar 

  • Gutenberg B and Richter C F 1944 Frequency of earthquakes in California; Bull. Seismol. Soc. Am. 34 185–188.

    Article  Google Scholar 

  • Gutenberg B and Richter C F 1956 Magnitude and energy of earthquakes; Ann. Geofis. 9 1–15.

    Google Scholar 

  • Hakimhashemi A H and Grünthal G 2012 A statistical method for estimating catalog completeness applicable to long-term nonstationary seismicity data; Bull. Seismol. Soc. Am. 102(6) 2530–2546.

    Article  Google Scholar 

  • Hanks T C and Johnston A C 1992 Common features of the excitation and propagation of strong ground motion for North American earthquakes; Bull. Seismol. Soc. Am. 82(1) 1–23.

    Google Scholar 

  • Heaton T H, Tajima T F and Mori A W 1986 Estimating ground motions using recorded accelerograms; Surv. Geophys. 8 25–83.

    Article  Google Scholar 

  • Kanamori H 1977 The energy release in great earthquakes; J. Geophys. Res. 82 2981–2987.

    Article  Google Scholar 

  • Khan M M and Kumar G K 2020 Site-specific probabilistic seismic hazard assessment for proposed smart city, Warangal; J. Earth Syst. Sci. 129 1–18.

    Article  Google Scholar 

  • Khan P K, Ghosh M, Chakraborty P P and Mukherjee D 2011 Seismic b-value and the assessment of ambient stress in northeast India; Pure Appl. Geophys. 168 1693–1706.

    Article  Google Scholar 

  • Kolathayar S and Sitharam T G 2012 Characterisation of regional seismic source zones in and around India; Seismol. Res. Lett. 83(1) 77–85.

    Article  Google Scholar 

  • Kolathayar S, Sitharam T G and Vipin K S 2012 Spatial variation of seismicity parameters across India and adjoining areas; Nat. Hazards 60(3) 1365–1379.

    Article  Google Scholar 

  • Kramer S L 1996 Geotechnical earthquake engineering; In: Prentice–Hall International series in civil engineering and engineering mechanics, Prentice-Hall, New Jersey.

  • Krzanowski W J and Lai Y T 1988 A criterion for determining the number of groups in a data set using sum-of-squares clustering; Biometrics 44 23–34.

    Article  Google Scholar 

  • Kumar A, Baro O and Harinarayan N H 2016 Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values; Nat. Hazards 81 543–572.

    Article  Google Scholar 

  • Lay T and Wallace T C 1995 Modern global seismology; Elsevier Publishers.

  • Liu R, Xu Z and Liang L 2007 Comparison between different earthquake magnitudes determined by China seismograph network; Acta Seismol. Sinica 20(5) 497–506.

    Article  Google Scholar 

  • Mandal H S, Shukla A K, Khan P K and Mishra O P 2013 A new insight into probabilistic seismic hazard analysis for central India; Pure Appl. Geophys. 170(12) 2139–2161.

    Article  Google Scholar 

  • McGuire R K 1976 FORTRAN computer program for seismic risk analysis; US Geol. Surv. Open File report, pp. 76–67.

  • Molchan G M and Dmitrieva O E 1992 Aftershock identification: Methods and new approaches; Geophys. J. Int. 109(3) 501–516.

    Article  Google Scholar 

  • Mulargia F and Tinti S 1985 Seismic sample areas defined from incomplete catalogues: An application to the Italian territory; Phys. Earth Planet Int. 40 273–300.

    Article  Google Scholar 

  • Nath S K and Thingbaijam K K S 2012 Probabilistic seismic hazard assessment of India; Seismol. Res. Lett. 83(1) 135–149.

    Article  Google Scholar 

  • Nayak M and Sitharam T G 2019 Estimation and spatial mapping of seismicity parameters in western Himalaya, central Himalaya and Indo-Gangetic plain; J. Earth Syst. Sci. 128(45) 1–13.

    Google Scholar 

  • NDMA 2019 Earthquake Disaster Risk Index Report 50 Towns & 1 District in Seismic Zones III, IV and V; Government of India, New Delhi.

  • Pallav K, Raghukanth S and Singh K 2012 Probabilistic seismic hazard estimation of Manipur, India; J. Geophys. Eng. 9 516–533.

    Article  Google Scholar 

  • Pandey A K, Chingtham P and Roy P N S 2017 Homogeneous earthquake catalogue for Northeast region of India using robust statistical approaches; Geomatics Nat. Hazards Risk 8(2) 1477–1491.

    Article  Google Scholar 

  • Pezeshk S, Zandieh A, Campbell K W and Tavakoli B 2018 Ground-motion prediction equations for central and eastern North America using the hybrid empirical method and NGA-West2 empirical ground-motion models; Bull. Seismol. Soc. Am. 108(4) 2278–2304.

    Article  Google Scholar 

  • Ramakrishnan R, Kolathayar S and Sitharam T G 2021 Probabilistic seismic hazard analysis of North and Central Himalayas using regional ground motion prediction equations; Bull. Eng. Geol. Environ. 80 8137–8157.

    Article  Google Scholar 

  • Reasenberg P 1985 Second-order moment of central California seismicity 1969–1982; J. Geophys. Res. 90 5479–5495.

    Article  Google Scholar 

  • Richter C F 1935 An instrumental magnitude scale; Bull. Seismol. Soc. Am. 25 1–32.

    Article  Google Scholar 

  • Ritsema A 1969 Seismology and upper mantle investigations. The earth’s crust and upper mantle; Geophys. Monogr. Ser. 13 110–115.

    Google Scholar 

  • Rout M M, Das J and Das R 2015 Probabilistic seismic hazard assessment of NW and central Himalayas and the adjoining region; J. Earth Syst. Sci. 124(3) 577–586.

    Article  Google Scholar 

  • Scaria A, Gupta I D and Gupta V K 2021 An improved probabilistic seismic hazard mapping of peninsular shield region of India; Soil Dyn. Earthq. Eng. 141 106417.

    Article  Google Scholar 

  • Schorlemmer D and Gerstenberger M 2007 Relm testing center; Seismol. Res. Lett. 78(1) 30–36.

    Article  Google Scholar 

  • Scordilis E M 2006 Empirical global relations converting MS and mb to moment magnitude; J. Seismol. 10 225–236.

    Article  Google Scholar 

  • Seeber L, Ekstrom G, Jain S K, Murty C V R, Chandak N and Armbruster J G 1996 The 1993 Killari earthquake in central India: A new fault in Mesozoic basalt flows; J. Geophys. Res. 101 8643–8660.

    Article  Google Scholar 

  • Sherrill E M, Hamburger M W and Anna Nowicki Jessee M 2022 Use of scenario earthquakes for seismic hazard assessment in low-seismicity, stable continental regions: A case study from Indiana, USA; Earthq. Spectra. 38(4) 2754–2787, https://doi.org/10.1177/87552930221096700.

    Article  Google Scholar 

  • Sinha R and Sarkar R 2020 Probabilistic seismic hazard assessment of Dhanbad city, India; Bull. Eng. Geol. Environ. 79 5107–5124.

    Article  Google Scholar 

  • Sitharam T G and Kolathayar S 2013 Seismic hazard analysis of India using areal sources; J. Asian Earth Sci. 62 647–653.

    Article  Google Scholar 

  • Sitharam T G and Sil A 2014 Comprehensive seismic hazard assessment of Tripura and Mizoram states; J. Earth Syst. Sci. 123(4) 837–857.

    Article  Google Scholar 

  • Sreejaya K P, Raghukanth S T G, Gupta I D, Murty C V R and Srinagesh D 2022 Seismic hazard map of India and neighbouring regions; Soil Dyn. Earthq. Eng. 163 107505.

    Article  Google Scholar 

  • Stucchi M, Albini P, Mirto M and Rebez A 2004 Assessing the completeness of Italian historical earthquake data; Ann. Geophys. 47 659–673.

    Google Scholar 

  • Surve G, Kanaujia J and Sharma N 2021 Probabilistic seismic hazard assessment studies for Mumbai region; Nat. Hazards 107(1) 575–600.

    Article  Google Scholar 

  • Thingbaijam K K S, Nath S K, Yadav A, Raj A, Walling M Y and Mohanty W K 2008 Recent seismicity in Northeast India and its adjoining region; J. Seismol. 12(1) 107–123.

    Article  Google Scholar 

  • Uhrhammer R 1986 Characteristics of northern and southern California seismicity; Earthq. Notes 57(1) 21.

    Google Scholar 

  • Van Stiphout T, Zhuang J and Marsan D 2012 Seismicity declustering; Community Online Resource for Statistical Seismicity Analysis, https://doi.org/10.5078/corssa-52382934.

    Article  Google Scholar 

  • Weatherill G and Burton P W 2009 Delineation of shallow seismic source zones using K-means cluster analysis, with application to the Aegean region; Geophys. J. Int. 176(2) 565–588.

    Article  Google Scholar 

  • Wiemer S 2001 A software package to analyse seismicity: ZMAP; Seismol. Res. Lett. 72(3) 373–382.

    Article  Google Scholar 

  • Xie Z J, Li S Y, Lyu Y J, Xu W J and Zhang Y L 2021 Empirical relations for conversion of surface- and body-wave magnitudes to moment magnitudes in China’s seas and adjacent areas; J. Seismol. 25(1) 213–233.

    Article  Google Scholar 

  • Yenier E and Atkinson G M 2015 Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Application to central and eastern North America; Bull. Seismol. Soc. Am. 105(4) 1989–2009.

    Article  Google Scholar 

  • Zamani A and Hashemi N 2004 Computer-based self-organised tectonic zoning: A tentative pattern recognition for Iran; Comput. Geosci. 30 705–718.

    Article  Google Scholar 

Download references

Acknowledgement

The authors greatly acknowledge the sources of seismic catalogues used in this study: International Seismological Centre, UK; US Geological Survey; National Center for Seismology, India.

Author information

Authors and Affiliations

Authors

Contributions

Sagar Dhole: Methodology, supervision, software, formal analysis, visualisation, writing – original draft, review and editing. Sachin Bakre: Conceptualisation, supervision, writing – review and editing.

Corresponding author

Correspondence to Sagar Dhole.

Additional information

Communicated by Sagarika Mukhopadhyay

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhole, S., Bakre, S. An updated homogeneous earthquake catalogue and earthquake recurrence parameters of Maharashtra state, an Indian stable continental region. J Earth Syst Sci 133, 13 (2024). https://doi.org/10.1007/s12040-023-02220-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02220-z

Keywords

Navigation