Skip to main content

Advertisement

Log in

Geomorphic signature of active tectonics in Simav Graben: An evaluation of indicator relative tectonic activity of Simav Fault and its seismotectonic implications for Western Anatolia

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The main objective of this study is to analyze geomorphic landforms and quantitatively measure various geomorphic parameters to investigate the relative tectonic activity, vertical slip rate, and uplift rate of the Simav Fault. The Simav Fault, which is ~25 km long and morphologically composed of five mountain fronts forms the NW section of the ~400 km long Afyon–Simav Fault System (ASFS) within the Western Anatolian Graben System (WAGS). The mountain front sinuosity (Smf) and valley floor width-to-height ratio (Vf) hypsometric integral (HI) and hypsometric curve (HC), asymmetry factor (AF), drainage basin shape (Bs) and stream length gradient index (SL) indices were calculated to determine the relative tectonic activity in the mountain fronts and drainage areas bounded by the Simav Fault. The spatial distribution of the index of relative tectonic activity (Iat) was revealed using the combination of the obtained morphometric analysis results. Geomorphic indices indicated that high tectonic activity is intensified along the entire Simav Fault, which has a normal fault component, whereas medium and low tectonic activity is calculated on faults with strike-slip components. The highest vertical slip rates obtained using the slopes of the facets were calculated as 0.19 mm/y for MF-2 and MF-4 and the lowest as 0.07 mm/y for MF-5. Furthermore, using the heights of the facets and vertical slip rates, the youngest mountain front was found to be MF-2 (8.17 ma) and the oldest mountain front was found to be MF-5 (14.71 ma). The obtained vertical slip rate and age data showed that the mountain front in the central part of the Simav Fault is younger with having higher vertical slip rate. According to this study, the Simav Fault has played a decisive role in the evolvement of the actual morphology in the study area, has produced moderate earthquakes in the last century, and is thought to have the potential to produce larger earthquakes in the future (up to M6.71). It is important for the region to investigate and reveal the earthquake potential of this fault through paleoseismic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Akdeniz N and Konak N 1979 Menderes Masifi’nin Simav dolayındaki kaya birimleri ve metabazik, metaultrabazik kayaların konumu; Türkiye Jeoloji Kurumu Bülteni 22 175–184.

    Google Scholar 

  • Akkar S, Azak T E, Can T, Çeken U, Demircioğlu M B, Duman T Y, Erdik M, Ergintav S, Kadirioğlu F T, Kalafat D, Kale Ö, Kartal R F, Kekovalı K, Kılıç T, Özalp S, Poyraz S A, Sesetyan K, Tekin S, Yakut A, Yılmaz M T, Yücemen M S and Fercan Ö 2018 Evaluation of seismic hazard maps in Turkey; Bull. Earthq. Eng. 16(8) 3197–3228, https://doi.org/10.1007/s10518-018-0349-1.

    Article  Google Scholar 

  • Aktuğ B, Parmaksız E, Kurt M, Lenk O, Kılıçoğlu A, Gürdal M A and Özdemir S 2013 Deformation of Central Anatolia: GPS implications; J. Geodyn. 67 78–96, https://doi.org/10.1016/j.jog.2012.05.008.

    Article  Google Scholar 

  • Aktuğ B, Tiryakioğlu I, Sözbilir H, Özener H, Özkaymak Ç, Yiğit C O, Solak H İ, Eyübagil E E, Gelin B, Tatar O and Softa M 2021 GPS derived finite source mechanism of the 30 October 2020 Samos earthquake, Mw = 6.9 in Aegean extensional region; Turk. J. Earth Sci. 30 718–737, https://doi.org/10.3906/yer-2101-18.

    Article  Google Scholar 

  • Alipoor R, Poorkermani M, Zare M and El-Hamdouni R 2011 Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran); Geomorphology 128 1–14.

    Article  Google Scholar 

  • Ambraseys N N 2009 Earthquakes in the Mediterranean and Middle East: A multidisciplinary study of seismicity up to 1900; Cambridge University Press, Cambridge, ISBN: 978-0-521-87292-8.

    Book  Google Scholar 

  • Ambraseys N and Tchalenko J S 1972 Seismotectonic aspect of the Gediz, Turkey, earthquake of March 1972; Geophys. J. R. Astronom. Soc. 30 229–252.

    Article  Google Scholar 

  • Azor A, Keller E A and Yeats R S 2002 Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California; Geol. Soc. Am. Bull. 114 745–753.

    Article  Google Scholar 

  • Barka A and Reilinger R 1997 Active tectonics of the Eastern Mediterranean region: Deduced from GPS, neotectonic and seismicity data; Annali di Geofisica 40(3).

  • Bayrak Y and Bayrak E 2012 An evaluation of earthquake hazard potential for different regions in Western Anatolia using the historical and instrumental earthquake data; Pure Appl. Geophys. 169 1859–1873.

    Article  Google Scholar 

  • Bozkurt E 2001 Neotectonics of Turkey – a synthesis; Geodinamica Acta 14(1–3) 3–30.

    Article  Google Scholar 

  • Bull W B and McFadden L D 1977 Tectonic geomorphology north and south of the Garlock fault, California; In: Geomorphology in Arid Regions (ed.) Doehering D O, Proceedings at the eighth annual geomorphology symposium. State University of New York, Binghampton, NY, pp. 115–138.

  • Cağlayan A, Saber R and Işık V 2021 Geomorphic evidence of active faulting in the Simav Halfgraben, Western Turkey; 11th Congress of the Balkan Geophysical Society 2021 1–5, https://doi.org/10.3997/2214-4609.202149BGS78.

  • Cannon P J 1976 Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin; Oklahoma Geol. Notes 36(1) 3–16.

    Google Scholar 

  • Çemen I, Catlos E J, Gögüş O and Özerdem C 2006 Postcollisional extensional tectonics and exhumation of the Menderes Massif in the western Anatolia extended terrane, Turkey; Spec. Pap. Geol. Soc. Am. 409 353–379, https://doi.org/10.1130/2006.2409(18).

    Article  Google Scholar 

  • Chamot-Rooke N and Dotmed Working Group 2005 DOTMED – Deep offshore tectonics of the Mediterranean: A synthesis of deep marine data in eastern Mediterranean; Mémoire De La Société Géologique De France & American Association of Petroleum Geologists 177 64.

    Google Scholar 

  • Chatzipetros A, Kiratzi A, Sboras S, Zouros N and Pavlides S 2013 Active faulting in the north-eastern Aegean Sea Islands; Tectonophys. 597 106–122, https://doi.org/10.1016/j.tecto.2012.11.026.

    Article  Google Scholar 

  • Chorowicz J, Dhont D and Gündoğdu N 1999 Neotectonics in the eastern North Anatolian Fault region (Turkey) advocates crustal extension: Mapping from SAR ERS imagery and Digital Elevation Model; J. Struct. Geol. 21 511–532.

    Article  Google Scholar 

  • Cox R T 1994 Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment; Geol. Soc. Am. Bull. 106 571–581.

    Article  Google Scholar 

  • Demirci A, Özden S, Bekler T, Kalafat D and Pınar A 2015 An active extensional deformation example: 19 May 2011 Simav earthquake (Mw = 5.8), Western Anatolia, Turkey; J. Geophys. Eng. 12(4) 552, https://doi.org/10.1002/2016JB012828.

    Article  Google Scholar 

  • Dewey J F and Şengör A M C 1979 Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone; Geol. Soc. Am. Bull. 90(1) 84–92.

    Article  Google Scholar 

  • Duman T Y, Elmacı H, Özalp S, Olgun Ş and Emre Ö 2013 Simav Fay Zonunda İlk Paleosismolojik Bulgular; 66th Geological Congress of Turkey, Ankara, 1–5 April 2013, pp. 28–29.

  • El Hamdouni R, Irigaray C, Fernández T, Chacón J and Keller E A 2008 Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain); Geomorphology 96 150–173, https://doi.org/10.1016/j.geomorph.2007.08.004.

    Article  Google Scholar 

  • Elias Z 2015 The neotectonic activity along the lower Khazir River by using SRTM image and geomorphic indices; Earth Sci. 1(1) 50–58, https://doi.org/10.11648/j.earth.20150401.15.

    Article  Google Scholar 

  • Emre Ö, Duman T Y and Özalp S 2011 1:250000 scale Active Fault Map Series of Turkey, Kütahya (NJ 35-4) Quadrangle, Serial Number 10; General Directorate of Mineral Research and Exploration, Ankara, Turkey.

  • Emre Ö, Duman T Y, Özalp S, Elmacı H, Olgun Ş and Şaroğlu F 2013 Active fault map of Turkey with an explanatory text. 1:1,250,000 Scale; General Directorate of Mineral Research and Exploration, Special Publication Series-30, Ankara-Turkey, ISBN: 978-605-5310-56-1.

  • Emre Ö, Duman T Y, Özalp S, Şaroğlu F, Olgun Ş, Elmacı H and Çan T 2018 Active fault database of Turkey; Bull. Earthq. Eng. 16(8) 3229–3275, https://doi.org/10.1007/s10518-016-0041-2.

    Article  Google Scholar 

  • Ercan T, Günay E and Savaşçın M Y 1982 Simav ve çevresindeki Senozoyik yaşlı volkanizmanın bölgesel yorumlanması; MTA Dergisi 97(98) 86–101.

    Google Scholar 

  • Ercan T, Satır M, Sevin D and Türkecan A 1996 Interpretation of the new radiometric age determinations from the Tertiary and Quaternary volcanic rocks in western Anatolia; Bull. Min. Res. Explor. 119 103–112.

    Google Scholar 

  • Erinç S, Bilgin T, Bener M, Sungur K, Erer S and Göçmen K 1970 28 Mart 1970 Gediz depremi tatbiki jeomorfolojik etüdü; İstanbul Üniversitesi Edebiyat Fakültesi Yayınları 60 1520.

    Google Scholar 

  • Guidoboni E, Comastri A and Traina G 1994 Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century; Istituto nazionale di geofisica pubblicazione, Rome.

    Google Scholar 

  • Gün H L, Akdeniz N and Günay E 1979 Gediz ve Emet güneyi Neojen havzalarının jeolojisi ve yaş sorunları; Jeoloji Mühendisliği 8 3–14.

    Google Scholar 

  • Gündoğdu E, Özden S and Karaca Ö 2015 Simav Fayı ve yakın civarının saha verileri ile alos-palsar ve Landsat görüntülerinin karşılaştırmalı yapısal analizi; Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 32(1) 60–71.

    Google Scholar 

  • Gündoğdu E, Özden S and Bekler T 2020 Sındırgı Fayı ve Düvertepe Fay Zonu Yakın Civarının Kinematik ve Sismotektonik Özellikleri: Batı Anadolu (Türkiye); Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6–2 378–395.

    Google Scholar 

  • Gürboğa Ş 2013 28 March 1970 Gediz earthquake fault, western Turkey: Palaeoseismology and tectonic significance; Int. Geol. Rev. 55 1191–1201, https://doi.org/10.1080/00206814.2013.771420.

    Article  Google Scholar 

  • Gürboğa Ş 2014 Structural analyses of Şaphane relay ramps and fault linkage evolution in active extensional regime, western Turkey; Turk. J. Earth Sci. 23(6) 615–626, https://doi.org/10.3906/yer-1405-16.

    Article  Google Scholar 

  • Gürer A, Bayrak M, Gürer F Ö and İlkışık M O 2004 The deep resistivity structure of southwestern Turkey: Tectonic implications; Int. Geol. Rev. 46 655–670, https://doi.org/10.2747/0020-6814.46.7.655.

    Article  Google Scholar 

  • Hack J T 1973 Stream profile analysis and stream-gradient index; U.S. Geol. Surv. J. Res. 1 421–429.

    Google Scholar 

  • Hare P W and Gardner T W 1985 Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya peninsula, Costa Rica; In: Tectonic geomorphology (eds) Morisawa M and Hack J T, Proceedings of the 15th annual Bighampton Geomorphology Symposium, Boston, MA: Allen & Unwin, pp. 75–104, https://doi.org/10.1016/0014-4827(85)90090-4.

  • ISC (International Seismological Center) 2021 Recent earthquakes in Turkey. (online), http://www.isc.ac.uk/.

  • Jackson J 1994 Active tectonics of the Aegean region; Annu. Rev. Earth Planet. Sci. 22 239–271.

    Article  Google Scholar 

  • Ji Y, Su S, Liu Z and Huang Q 2021 Assessment of tectonic activity based on the geomorphic indices in the middle reaches of the upstream of Jinsha River, China; Geol. J. 56 3974–3991, https://doi.org/10.1002/gj.4148.

    Article  Google Scholar 

  • Jolivet L and Brun J P 2010 Cenozoic geodynamic evolution of the Aegean; Int. J. Earth Sci. (Geol. Rundsch.) 99 109–138, https://doi.org/10.1007/s00531-008-0366-4.

    Article  Google Scholar 

  • Kadirioğlu F T, Kartal R F, Kılıç T, Kalafat D, Duman T Y, Eroğlu Azak T, Özalp S and Emre Ö 2017 Türkiye ve yakın çevresi için geliştirilmiş aletsel dönem (1900–2012) deprem kataloğu (M ≥ 4.0); Maden Tetkik Ve Arama Genel Müdürlüğü Özel Yayınlar Serisi 34 1246.

    Google Scholar 

  • Kalafat D, Güneş Y, Kekovalı K, Kara M, Deniz P and Yılmazer M 2011 A revised and extended earthquake catalogue for Turkey since 1900 (M ≥ 4.0); Boğaziçi University, Kandilli Observatory and Earthquake Research Institute.

  • Kaplan M 2014 Neotectonics and Seismicity of Eastern Simav Graben, Kütahya-Turkey; Graduate School of Natural and Applied Sciences of Middle East Technical University, Thesis of Master of Science, Ankara, 121p.

  • Keller E A 1986 Investigation of Active Tectonics: Use of Surficial Earth Processes; National Academy Press, Washington DC, pp. 136–147.

    Google Scholar 

  • Keller E A and Pinter N 2002 Active tectonics. Earthquakes, uplift, and landscape; Prentice Hall, Upper Saddle River, NJ, 362p, https://doi.org/10.1055/s-2002-34327.

  • Konak N 1982 Simav dolayının jeolojisi ve metamorfik kayaçlarının evrimi; İ.Ü.M.F Yerbilimleri Dergisi 3 313–337.

    Google Scholar 

  • Konak N 2002 1/500.000 Türkiye Jeoloji Haritası; Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Koukouvelas I K and Aydin A 2002 Fault structure and related basins of the North Aegean Sea and its surroundings; Tectonics 21(5), https://doi.org/10.1029/2001TC901037.

  • Koukouvelas I K, Zygouri V, Papadopoulos G A and Verroios S 2017 Holocene record of slip-predictable earthquakes on the Kenchreai Fault, Gulf of Corinth, Greece; J. Struct. Geol. 94 258–274, https://doi.org/10.1016/j.jsg.2016.12.001.

    Article  Google Scholar 

  • Koukouvelas I K, Zygouri V, Nikolakopoulos K and Verroios S 2018 Treatise on the tectonic geomorphology of active faults: The significance of using a universal digital elevation model; J. Struct. Geol. 116 241–252, https://doi.org/10.1016/j.jsg.2018.06.007.

    Article  Google Scholar 

  • Le Pichon X and Angelier J 1979 The Hellenic arc and trench system: A key to the neotectonic evolution of the eastern Mediterranean area; Tectonophys. 60 1–42.

    Article  Google Scholar 

  • Le Pichon X, Şengör A M C and İmren C 2019 Pangea and the lower mantle; Tectonics 38(10) 3479–3504, https://doi.org/10.1029/2018tc005445.

    Article  Google Scholar 

  • Lifton N A and Chase C G 1992 Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California; Geomorphology 5 77–114, https://doi.org/10.1016/0169-555X(92)90059-W.

    Article  Google Scholar 

  • Lykousis V, Anagnostou C, Pavlakis P, Rousakis G and Alexandri M 1995 Quaternary sedimentary history and neotectonic evolution of the eastern part of the Central Aegean Sea, Greece; Marine Geol. 128 59–71, https://doi.org/10.1016/0025-3227(95)00088-G.

    Article  Google Scholar 

  • McKenzie D 1978 Active tectonics of Alpine-Himalayan belt: The Aegean and surrounding regions; Geophys J. R. Astrnom. Soc. London 55 217–254.

    Article  Google Scholar 

  • Moody J D and Hill M J 1956 Wrench-fault tectonics; Geol. Soc. Am. Bull. 67(9) 1207–1246.

    Article  Google Scholar 

  • Nas M, Lyubushin A, Softa M and Bayrak Y 2020 Comparative PGA-driven probabilistic seismic hazard assessment (PSHA) of Turkey with a Bayesian perspective; J. Seismol. 24(6) 1109–1129.

    Article  Google Scholar 

  • Ocakoğlu N, Demirbağ E and Kuşçu İ 2005 Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): Evidences of strike-slip faulting with compression in the Aegean extensional regime; Mar. Geol. 219(2–3) 155–171.

    Article  Google Scholar 

  • Öcal N 1968 1938–1955 yılları arasında Anadolu’da vukubulan bazı şiddetli zelzelelerde faylanma doğrultuları; M.E.H. Kandilli Rasathanesi, Sismoloji Yayınları 2, İstanbul.

  • Pike R J and Wilson S E 1971 Elevation-relief ratio, hypsometric integral and geomorphic area-altitude analysis; Geol. Soc. Am. Bull. 82 1079–1083.

    Article  Google Scholar 

  • Pınar N and Lahn E 1952 Türkiye Depremleri İzahlı Kataloğu; Bayındırlık Bakanlığı, Yapı ve İmar İşleri Reisliği, No. 6, Ankara.

  • Ramirez-Herrera M T 1998 Geomorphic assessment of active tectonics in the Acambay Graben, Mexican Volcanic Belt; Earth Surf. Proc. Land. 23 317–332.

    Article  Google Scholar 

  • Reading H G 1980 Characteristics and recognition of strike-slip fault systems; In:  Sedimentation in oblique-slip mobile zones (eds) Ballance P F and Reading H G, Wiley, New York, NY, pp. 7–26.

    Chapter  Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydurs A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov S V, Gomez F, Al-Ghazzi R and Karam G 2006 GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions; J. Geophys. Res. Solid Earth 111(B5) B05411, https://doi.org/10.1029/2005JB004051.

    Article  Google Scholar 

  • Rockwell T K, Keller E A, Clak M N and Johnson D L 1984 Chronology and rates of faulting of Ventura river terraces, California; Geol. Soc. Am. Bull. 95 1466–1476, https://doi.org/10.1130/0016-7606(1984)95%3c1466:CAROFO%3e2.0.CO;2.

    Article  Google Scholar 

  • Royden L H 1993 The tectonic expression slab pull at continental convergent boundaries; Tectonics 12(2) 303–325, https://doi.org/10.1029/92TC02248.

    Article  Google Scholar 

  • Selby M J 1980 A rock strength classification for geomorphic purposes: With tests from Antarctica and New Zealand; Zeitschrift Fur Geomorphologie 4 31–51.

    Article  Google Scholar 

  • Semiz B, Ersoy E Y, Özpınar Y, Helvacı C, Palmer M R and Billor M Z 2015 40Ar/39Ar Geochronology, geochemistry and petrology of volcanite rocks from the Simav Graben, western Turkey; Contrib. Miner. Petrol. 170(24) 1–24.

    Google Scholar 

  • Şengör A M C 1987 Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: Examples from western Turkey; Geol. Soc. Spec. Publ. London 28 575–589.

    Article  Google Scholar 

  • Şengör A M C, Görür N and Şaroğlu F 1985 Strike slip faulting and related basin formations in zones of tectonic escape: Turkey as a case study; In: Strike-slip faulting and basin formation (eds) Biddle K T and Christie-Blick N, Society of Economic Paleontologists and Mineralogists, Spec. Publ., Tulsa, Oklahoma 37 227–264.

  • Seyitoğlu G 1997 The Simav graben: An example of young E-W trending structures in the late Cenozoic extensional system of Western Turkey; Turk. J. Earth Sci. 6 135–141.

    Article  Google Scholar 

  • Seyitoğlu G and Scott B C 1991 Late Cenozoic crustal extension and basin formation in west Turkey; Geol. Mag. 128 155–166.

    Article  Google Scholar 

  • Seyitoğlu G and Scott B C 1992 The age of the Büyük Menderes graben (west Turkey) and its tectonic implications; Geol. Mag. 129 239–242.

    Article  Google Scholar 

  • Shawe D R 1965 Strike-slip control of Basin-Range structure indicated by historical faults in western Nevada; Geol. Soc. Am. Bull. 76(12) 1361–1377.

    Article  Google Scholar 

  • Silva P G, Goy J L, Zazo C and Bardají T 2003 Fault-generated mountain fronts in Southeast Spain: Geomorphologic assessment of tectonic and seismic activity; Geomorphology 50 203–225, https://doi.org/10.1016/S0169-555X(02)00215-5.

    Article  Google Scholar 

  • Softa M 2022 Morphometric and kinematic analysis of southern margin of the Küçük Menderes Graben and its tectonic implications in western Anatolia; Arab. J. Geosci. 15 131, https://doi.org/10.1007/s12517-021-09414-z.

    Article  Google Scholar 

  • Softa M, Tahir E, Sözbilir H, Joel Q G, Spencer C and Turan M 2018 Geomorphic evidence or active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey; Geodinamica Acta 30(1) 249–264, https://doi.org/10.1080/09853111.2018.1494776.

    Article  Google Scholar 

  • Soysal H, Sipahioğlu S, Kolcak D and Altinok Y 1981 Türkiye ve çevresinin tarihsel deprem kataloğu; TUBITAK, Proje no. TBAG 341, Istanbul, 86p.

  • Tan O, Tapırdamaz M C and Yörük A 2008 The Earthquake Catalogues for Turkey; Turk. J. Earth Sci. 17(2) 405–418.

    Google Scholar 

  • Tepe Ç and Sözbilir H 2017 Tectonic geomorphology of the Kemalpaşa Basin and surrounding horsts, southwestern part of the Gediz Graben, Western Anatolia; Geodin. Acta 29(1) 70–90.

    Article  Google Scholar 

  • Topal S 2018 Quantitative analysis of relative tectonic activity in the Acıgöl fault, SW Turkey; Arab. J. Geosci. 11(9) 1–10, https://doi.org/10.1007/s12517-018-3545-z.

    Article  Google Scholar 

  • Topal S 2019a Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): Insights from geomorphic indices and drainage analysis; J. Mt. Sci. 16(4) 909–923, https://doi.org/10.1007/s11629-018-5274-x.

    Article  Google Scholar 

  • Topal S 2019b Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi; Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9(1) 37–48, https://doi.org/10.17714/gumusfenbil.409561.

    Article  Google Scholar 

  • Topal S and Özkul M 2018 Determination of relative tectonic activity of the Honaz fault (SW Turkey) using geomorphic indices; Pamukkale Univ. J. Eng. Sci. 24(6) 1200–1208, https://doi.org/10.5505/pajes.2017.18199.

    Article  Google Scholar 

  • Topal S and Sançar T 2018 Active tectonics of Simav Fault: Inferences from bedrock channel basin and longitudinal profiles; VIII. Quaternary Symposium of Turkey, 2–5 May 2018, İstanbul/Türkiye, 39p.

  • Topal S, Keller E A, Bufe A and Koçyiğit A 2016 Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey; Geomorphology 259 55–69, https://doi.org/10.1016/j.geomorph.2016.01.014.

    Article  Google Scholar 

  • Tsimi C and Ganas A 2015 Using the ASTER global DEM to derive empirical relationships among triangular facet slope, facet height and slip rates along active normal faults; Geomorphology 234 171–181, https://doi.org/10.1016/j.geomorph.2015.01.018.

    Article  Google Scholar 

  • Uzel B, Langereis C G, Kaymakçı N, Sözbilir H, Özkaymak Ç and Özkaptan M 2015 Paleomagnetic evidence for an inverse rotation history of western Anatolia during the exhumation of Menderes core complex; Earth Planet. Sci. Lett. 414 108–125, https://doi.org/10.1016/j.epsl.2015.01.008.

    Article  Google Scholar 

  • Wells D L and Coppersmith K J 1994 New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement; Bull. Seismol. Soc. Am. 84 974–1002.

    Google Scholar 

  • Wells S G, Bullard T F, Menges C M, Drake P G, Karas P A, Kelson K I and Wesling J R 1988 Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica; Geomorphology 1(3) 239–265.

    Article  Google Scholar 

  • Wilcox R E, Harding T T and Seely D R 1973 Basic wrench tectonics; AAPG Bull. 57(1) 74–96.

    Google Scholar 

  • Yücel B, Coşkun B, Demirci S and Yıldırım N 1983 Simav (Kütahya) yöresinin jeolojisi ve jeotermal enerji olanakları; MTA Gen. Müd. Rapor No 8219, Ankara.

Download references

Acknowledgements

Previously, the Late Prof Edward A Keller (Environmental Studies and Department of Earth Science, University of California, Santa Barbara) motivated us to study such a region at the forefront of its seismicity. He was unable to contribute much to the writing of the paper due to his illness. Unfortunately, we lost Keller on 09.09.2022. This paper is dedicated to the memory of Edward A Keller who spent many years in the Science of Geomorphology and made undeniable contributions.

Author information

Authors and Affiliations

Authors

Contributions

S Topal: Conceptualization, analysis, investigation, methodology, writing–original draft, writing–review, and editing; M Softa: Data curation, investigation, methodology, writing–review, and editing.

Corresponding author

Correspondence to Savaş Topal.

Additional information

Communicated by George Mathew

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topal, S., Softa, M. Geomorphic signature of active tectonics in Simav Graben: An evaluation of indicator relative tectonic activity of Simav Fault and its seismotectonic implications for Western Anatolia. J Earth Syst Sci 132, 95 (2023). https://doi.org/10.1007/s12040-023-02110-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02110-4

Keywords

Navigation