Skip to main content

Advertisement

Log in

The reflectance spectroscopy of ultramafic rocks from the Nagaland Ophiolite Complex, NE India: Convergence of spectroscopic and petrological analyses

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The mafic–ultramafic cumulate rocks and mantle peridotites of an ophiolite are excellent recorders of the geodynamic evolution of a fossil subduction zone. The spectro-radiometric absorption features of olivine, orthopyroxene, clinopyroxene and serpentine, which are the dominant constituents of these ultramafic rocks, have emerged as essential tools for their identification. This study uses six different kinds of ultramafic rock samples – spinel lherzolite, spinel harzburgite, wehrlite, orthopyroxenite, olivine websterite, and dunite compositions from the Nagaland Ophiolite Complex, NE India. These are investigated with integrated petrographic, mineral and bulk rock compositional and reflectance spectroscopic studies to identify the constituent minerals. The study indicates that the most dominant olivine absorption features vary from 1038 to 1049 nm in Ni-poor ultramafic cumulates of wehrlite (Mg= 89, Ni = 355 ppm) and olivine websterite (Mg= 90.5, Ni = 361 ppm) to 1066–1097 nm in nickeliferous mantle peridotites of dunite (Mg= 87, Ni = 3658 ppm) and spinel lherzolite (Mg= 87, Ni = 2708 ppm) compositions. Reversal of the 625 nm reflectance maximum in olivine occurs for Ni concentrations in the mineral between 2200 and 2955 ppm. The low-Ca pyroxene (cf. orthopyroxene) species show characteristic absorption features at 902–926 nm in lherzolite and harzburgite samples and 918 nm in monomineralic orthopyroxenite. High-Ca pyroxene (cf. clinopyroxene) in most rocks records absorption features at 643–666 and 709–811 nm. The study also recognises major absorption bands at 1382–1400, 1913–1948, and 2304–2326 nm as indicative of secondary hydrous minerals as a product of alteration in the investigated rocks. The significance of major (Mg–Fe) and minor (Mn, Ni and Cr) element compositions of these ultramafic rocks to explain specific spectral signatures in olivine, orthopyroxene and clinopyroxene is discussed. The findings are expected to aid the interpretation of remotely sensed data from terrestrial and extra-terrestrial bodies, mapping ultramafic cumulate and mantle peridotite rocks in remote, covered, and unmapped terranes of ophiolitic origin, and in the process, identification of fossil oceanic subduction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  • Abdullah S, Misra S and Ghosh B 2018 Melt–rock interaction and fractional crystallisation in the Moho transition Zone: Evidence from the cretaceous Naga Hills Ophiolite, north-east India; Lithos 322 197–211.

    Article  Google Scholar 

  • Acharyya S K 1986 Tectonostratigraphic history of Naga Hills ophiolites; Geol. Surv. India Memoir 119 94–103.

    Google Scholar 

  • Adams J B 1974 Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system; J. Geophys. Res. 79(32) 4829–4836.

    Article  Google Scholar 

  • Adams J B 1975 Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals; In: Infrared and Raman spectroscopy of lunar and terrestrial minerals, pp. 91–116.

  • Agard P, Yamato P, Jolivet L and Burov E 2009 Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms; Earth-Sci. Rev. 92(1–2) 53–79.

    Article  Google Scholar 

  • Aitchison J C, Ao A, Bhowmik S, Clarke G L, Ireland T R, Kachovich S and Zhou R 2019 Tectonic evolution of the western margin of the Burma microplate-based on new fossil and radiometric age constraints; Tectonics 38(5) 1718–1741.

    Article  Google Scholar 

  • Alonso K, Bachmann M, Burch K, Carmona E, Cerra D, De los Reyes R and Tegler M 2019 Data products quality and validation of the DLR earth sensing imaging spectrometer DESIS; Sensors 19(20) 4471.

    Article  Google Scholar 

  • Ao A and Bhowmik S K 2014 Cold subduction of the Neotethys: The metamorphic record from finely banded lawsonite and epidote blueschists and associated metabasalts of the Nagaland Ophiolite Complex India; J. Metamorph. Geol. 32(8) 829–860.

    Article  Google Scholar 

  • Ao A, Bhowmik S K and Upadhyay D 2020 PT-melt/fluid evolution of abyssal mantle peridotites from the Nagaland Ophiolite Complex NE India: Geodynamic significance; Lithos 354 105344.

    Article  Google Scholar 

  • Bhowmik S K and Ao A 2016 Subduction initiation in the Neo-Tethys: Constraints from counterclockwise P–T paths in amphibolite rocks of the Nagaland Ophiolite Complex, India; J. Metamorph. Geol. 34(1) 17–44.

    Article  Google Scholar 

  • Bhowmik S K, Ao A and Rajkakati M 2022 Tectonic framework of the high-pressure metamorphic rocks of the Nagaland Ophiolite Complex north-east India and its geodynamic significance: A review; Geol. J. 57(2) 727–748.

    Article  Google Scholar 

  • Brunnschweiler R O 1966 On the geology of the Indoburman ranges: Arakan Coast and Yoma Chin Hills Naga Hills; J. Geol. Soc. Austr. 13(1) 137–194.

    Article  Google Scholar 

  • Büchl A, Brügmann G, Batanova V G, Münker C and Hofmann A W 2002 Melt percolation monitored by Os isotopes and HSE abundances: A case study from the mantle section of the Troodos Ophiolite; Earth Planet. Sci. Lett. 204(3–4) 385–402.

    Article  Google Scholar 

  • Burns R G 1970 Crystal field spectra and evidence of cation ordering in olivine minerals; Am. Mineral.: Earth Planet. Sci. Lett. 55(9–10) 1608–1632.

    Google Scholar 

  • Burns R G 1981 Intervalence transitions in mixed-valence minerals of iron and titanium; Ann. Rev. Earth Planet. Sci. 9 345.

    Article  Google Scholar 

  • Burns R G and Burns R G 1993 Mineralogical applications of crystal field theory, No. 5; Cambridge University Press.

    Book  Google Scholar 

  • Chen D, Chen Y and Xue D 2011 Digital fractional order Savitzky-Golay differentiator; IEEE Trans. Circuits and Systems II: Express; Briefs 58(11) 758–762.

  • Clark R N and Roush T L 1984 Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications; J. Geophys. Res. Solid Earth 89(B7) 6329–6340.

    Article  Google Scholar 

  • Clark R N, King T V, Klejwa M, Swayze G A and Vergo N 1990 High spectral resolution reflectance spectroscopy of minerals; J. Geophys. Res. Solid Earth 95(B8) 12,653–12,680.

    Article  Google Scholar 

  • Clénet H, Ceuleneer G, Pinet P, Abily B, Daydou Y, Harris E and Dantas C 2010 Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: Petrogenesis and relationship to mantle diapirism; Lithos 114(3–4) 265–281.

    Article  Google Scholar 

  • Clénet H, Pinet P, Ceuleneer G, Daydou Y, Heuripeau F, Rosemberg C and Gondet B 2013 A systematic mapping procedure based on the modified Gaussian model to characterise magmatic units from olivine/pyroxenes mixtures: Application to the Syrtis Major volcanic shield on Mars; J. Geophys. Res. Planets 118(8) 1632–1655.

    Article  Google Scholar 

  • Cloutis E A 1997 Manganese-rich olivines: Identification from spectral reflectance properties; J. Geophys. Res. Planets 102(E11) 25,575–25,580.

    Article  Google Scholar 

  • Cloutis E A 2002 Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions; J. Geophys. Res. Planets 107(E6) 6-1.

    Article  Google Scholar 

  • Cloutis E A and Gaffey M J 1991 Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationship to geothermometry; J. Geophys. Res. Planets 96(E5) 22,809–22,826.

    Article  Google Scholar 

  • Combe J P, Launeau P, Pinet P, Despan D, Harris E, Ceuleneer G and Sotin C 2006 Mapping of an ophiolite complex by high‐resolution visible‐infrared spectrometry; Geochem. Geophys. 7(8).

  • Dey A, Hussain M F and Barman M N 2018 Geochemical characteristics of mafic and ultramafic rocks from the Naga Hills Ophiolite India: Implications for petrogenesis; Geosci. Frontiers 9(2) 517–529.

    Article  Google Scholar 

  • Dokuz A, Uysal İ, Dilek Y, Karsli O, Meisel T and Kandemir R 2015 Geochemistry Re–Os isotopes and highly siderophile element abundances in the Eastern Pontide peridotites NE Turkey: Multiple episodes of melt extraction–depletion melt–rock interaction and fertilisation of the Rheic Ocean mantle; Gondwana Res. 27(2) 612–628.

    Article  Google Scholar 

  • Du Y, Chang C I, Ren H, Chang C C, Jensen J O and D’Amico F M 2004 New hyperspectral discrimination measure for spectral characterisation; Opt. Eng. 43(8) 1777–1786.

    Article  Google Scholar 

  • Dutta D, Lukose L and Samanta S 2019 Application of hyperspectral remote sensing in crop and soil studies; 1st edn, Scholar’s Press, 128p.

  • Dyar M D, Sklute E C, Menzies O N, Bland P A, Lindsley D, Glotch T and Sunshine J 2009 Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength and multi-technique approach; Am. Mineral. 94(7) 883–898.

    Article  Google Scholar 

  • Fareeduddin and Dilek Y 2015 Structure and petrology of the Nagaland–Manipur Hill Ophiolitic Mélange zone NE India: A fossil Tethyan subduction channel at the India–Burma Plate Boundary; Episodes 38 298–314.

    Article  Google Scholar 

  • Furnes H, Dilek Y, Zhao G, Safonova I and Santosh M 2020 Geochemical characterisation of ophiolites in the Alpine–Himalayan Orogenic Belt: Magmatically and tectonically diverse evolution of the Mesozoic Neotethyan oceanic crust; Earth-Sci. Rev. 208 103258.

    Article  Google Scholar 

  • Gan F P and Wang R S 2007 The application of the hyperspectral imaging technique to the geological investigation; Remote Sensing for Land and Resources 4 57–60.

    Google Scholar 

  • Ghosh B, Mukhopadhyay S, Morishita T, Tamura A, Arai S, Bandyopadhyay D and Ovung T N 2018 Diversity and evolution of suboceanic mantle: Constraints from Neotethyan ophiolites at the eastern margin of the Indian plate; J. Asian Earth Sci. 160 67–77.

    Article  Google Scholar 

  • Giacomo C, Ettore L, Rino L, Rosa L, Rocchina G, Girolamo D M and Patrizia S 2020 The hyperspectral prisma mission in operations; In: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium (IEEE), pp. 3282–3285.

  • Goldman D S and Rossman G R 1977 The spectra of iron in orthopyroxene revisited: The splitting of the ground state; Am. Mineral. 62(1–2) 151–157.

    Google Scholar 

  • Goodenough K M, Styles M T, Schofield D, Thomas R J, Crowley Q C, Lilly R M and Carney J N 2013 Architecture of the Oman–UAE ophiolite: Evidence for a multi-phase magmatic history; In: Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues; Springer, Berlin Heidelberg, pp. 23–42.

    Chapter  Google Scholar 

  • Green A A and Craig M D 1985 Analysis of aircraft spectrometer data with logarithmic residuals; In: JPL Proc. Airborne Imaging Spectrometer Data Anal Workshop.

  • Grove C I, Hook S J and Paylor III E D 1992 Laboratory reflectance spectra of 160 minerals 04 to 25 micrometres; Pasadena CA: Jet Propulsion Laboratory.

  • Guha A, Rao D A, Ravi S, Kumar K V and Rao E D 2012 Analysis of the potential of kimberlite rock spectra as spectral end member using samples from Narayanpet Kimberlite Field Andhra Pradesh; Curr. Sci. 13 1096–1104.

    Google Scholar 

  • Hazen R M, Bell P M and Mao H K 1978 Effects of compositional variation on absorption spectra of lunar pyroxenes; Lunar and Planetary Science Conference Proceedings 9 2919–2934.

    Google Scholar 

  • Hopson C A, Coleman R G, Gregory R T, Pallister J S and Bailey E H 1981 Geologic section through the Samail ophiolite and associated rocks along a Muscat-Ibra transect southeastern Oman Mountains; J. Geophys. Res. Solid Earth 86(B4) 2527–2544.

    Article  Google Scholar 

  • Hunt G R 1977 Spectral signatures of particulate minerals in the visible and near-infrared; Geophysics 42(3) 501–513.

    Article  Google Scholar 

  • Hunt G R and Salisbury J W 1970 Visible and near-infrared spectra of minerals and rocks: I silicate minerals; Mod. Geol. 1 283–300.

    Google Scholar 

  • Hunt G R and Ashley R P 1979 Spectra of altered rocks in the visible and near-infrared; Econ. Geol. 74(7) 1613–1629.

    Article  Google Scholar 

  • Jain A and Bhowmik S K 2016 Tectonics and evolution of the Trans-Himalayan Mountains and Nagaland Ophiolite Belt; Proc. Indian Nat. Sci. Acad. 82(3) 617–624.

    Article  Google Scholar 

  • Khwairakpam N and Maibam B 2018 Petrological significance of mantle Peridotites from the Naga Ophiolite Belt Phek District Nagaland; J. Appl. Geochem. 20(1) 50–58.

    Google Scholar 

  • King T V and Ridley W I 1987 Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications; J. Geophys. Res. Solid Earth 92(B11) 11,457–11,469.

    Article  Google Scholar 

  • King T V and Clark R N 1989 Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy; J. Geophys. Res. Solid Earth 94(B10) 13,997–14,008.

    Article  Google Scholar 

  • Klima R L, Dyar M D and Pieters C M 2011 Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure; Meteor. Planet. Sci. 46(3) 379–395.

    Article  Google Scholar 

  • Kokaly R F, Johnson M R, Graham G E, Hoefen T M, Kelley K D and Hubbard B E 2018 Imaging spectrometer reflectance data mineral predominance map and white mica wavelength position map Nabesna Quadrangle Alaska (ver 1.1 October 2018): US Geological Survey data release.

  • Kruse F A, Lefkoff A B, Boardman J W, Heidebrecht K B, Shapiro A T, Barloon P J and Goetz A F H 1993 The spectral image processing system (SIPS) – interactive visualisation and analysis of imaging spectrometer data; Remote Sens. Environ. 44(2–3) 145–163.

    Article  Google Scholar 

  • Laakso K, Rivard B, Peter J M, White H P, Maloley M, Harris J and Rogge D 2015 Application of airborne laboratory and field hyperspectral methods to mineral exploration in the Canadian Arctic: Recognition and characterisation of volcanogenic massive sulfide-associated hydrothermal alteration in the Izok Lake deposit area Nunavut Canada; Econ. Geol. 110(4) 925–941.

    Article  Google Scholar 

  • Le Corre L, Reddy V, Sanchez J A, Dunn T, Cloutis E A, Izawa M R and Nathues A 2015 Exploring exogenic sources for the olivine on Asteroid 4 Vesta; Icarus 258 483–499.

    Article  Google Scholar 

  • Li J Y, Helfenstein P, Buratti B, Takir D and Clark B E 2015 Asteroid photometry; Asteroids IV 86 277–326.

    Google Scholar 

  • Longhi I, Sgavetti M, Chiari R and Mazzoli C 2001 Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 04–25 μm interval: A tool for hyperspectral data interpretation; Int. J. Remote Sens. 22(18) 3763–3782.

    Article  Google Scholar 

  • Madden H 1978 Comments on smoothing and differentiation of data by simplified least square procedure; Anal. Chem. 50(9) 1383–1386.

    Article  Google Scholar 

  • McCanta M C and Dyar M D 2017 Impact-related thermal effects on the redox state of Ca-pyroxene; Meteorit. Planet. Sci. 52(2) 320–332.

    Article  Google Scholar 

  • McCanta M C and Dyar M D 2020 Effects of oxidation on pyroxene visible-near infrared and mid-infrared spectra; Icarus 352 113978.

    Article  Google Scholar 

  • Milton E J, Schaepman M E, Anderson K, Kneubühler M and Fox N 2009 Progress in field spectroscopy; Remote Sens. Environ. 113 S92–S109.

    Article  Google Scholar 

  • Moeinzadeh H 2015 Hyperspectral mapping of Iranian east ophiolite mélanges using neutral network classification method; Arab. J. Geosci. 8(4) 2169–2178.

    Article  Google Scholar 

  • Ody A, Poulet F, Bibring J P, Loizeau D, Carter J, Gondet B and Langevin Y 2013 Global investigation of olivine on Mars: Insights into crust and mantle compositions; J. Geophys. Res. Planets 118(2) 234–262.

    Article  Google Scholar 

  • Okada K and Iwashita A 1992 Hyper-multispectral image analysis based on waveform characteristics of the spectral curve; Adv. Space Res. 12(7) 433–442.

    Article  Google Scholar 

  • Poulet F, Gomez C, Bibring J P, Langevin Y, Gondet B, Pinet P and Mustard J 2007 Martian surface mineralogy from Observatoire pour la Minéralogie l'Eau les Glaces et l'Activité on board the Mars Express spacecraft OMEGA/MEx): Global mineral maps; J. Geophys. Res. Planets 112(E8).

  • Qasim M, Khan S D and Haider R 2022 Integration of multispectral and hyperspectral remote sensing data for lithological mapping in Zhob Ophiolite Western Pakistan; Arab. J. Geosci. 15(7) 1–19.

    Article  Google Scholar 

  • Rajkakati M, Bhowmik S K, Ao A, Ireland T R, Avila J, Clarke G L and Aitchison J C 2019 Thermal history of Early Jurassic eclogite facies metamorphism in the Nagaland Ophiolite Complex NE India: New insights into pre-Cretaceous subduction channel tectonics within the Neo-Tethys; Lithos 346 105166.

    Article  Google Scholar 

  • Rossman G R 1980 Pyroxene spectroscopy; In: Pyroxenes. Reviews in mineralogy, No. 7, Mineralogical Society of America, Washington, DC, pp. 93–115, ISBN 0-939950-07-3.

  • Roy R, Launeau P, Carrere V, Pinet P, Ceuleneer G, Clénet H and Amri I 2009 Geological mapping strategy using visible near‐infrared–shortwave infrared hyperspectral remote sensing: Application to the Oman ophiolite Sumail Massif; Geochem. Geophys. 10(2).

  • Ruffin C, King R L and Younan N H 2008 A combined derivative spectroscopy and Savitzky-Golay filtering method for the analysis of hyperspectral data; GIsci. Remote Sens. 45(1) 1–15.

    Article  Google Scholar 

  • Sanchez J A, Reddy V, Kelley M S, Cloutis E A, Bottke W F, Nesvorný D, Lucas M P, Hardersen P S, Gaffey M J, Abell P A and Le Corre L 2014 Olivine-dominated asteroids: Mineralogy and origin; Icarus 228 288–300.

    Article  Google Scholar 

  • Savitzky A and Golay M J 1964 Smoothing and differentiation of data by simplified least squares procedures; Anal. Chem. 36(8) 1627–1639.

    Article  Google Scholar 

  • Schade U, Wäsch R and Moroz L 2004 Near-infrared reflectance spectroscopy of Ca-rich clinopyroxenes and prospects for remote spectral characterisation of planetary surfaces; Icarus 168(1) 80–92.

    Article  Google Scholar 

  • Schaepman M E 2007 Spectrodirectional remote sensing: From pixels to processes; Int. J. Appl. Earth Obs. Geoinf. 9(2) 204–223.

    Google Scholar 

  • Schodlok M C, Frei M and Segl K 2022 Implications of new hyperspectral satellites for raw materials exploration; Miner. Econ. 35 495–502.

    Article  Google Scholar 

  • Searle M P, Noble S R, Cottle J M, Waters D J, Mitchell A H G, Hlaing T and Horstwood M S A 2007 Tectonic evolution of the Mogok metamorphic belt Burma Myanmar constrained by U–Th–Pb dating of metamorphic and magmatic rocks; Tectonics 26(3).

  • Serventi G, Carli C, Sgavetti M, Ciarniello M, Capaccioni F and Pedrazzi G 2013 Spectral variability of plagioclase–mafic mixtures (1): Effects of chemistry and modal abundance in reflectance spectra of rocks and mineral mixtures; Icarus 226(1) 282–298.

    Article  Google Scholar 

  • Singer R B 1981 Near-infrared spectral reflectance of mineral mixtures: Systematic combinations of pyroxenes olivine and iron oxides; J. Geophys. Res. Solid Earth 86(B9) 7967–7982.

    Article  Google Scholar 

  • Steffen G, Langer K and Seifert F 1988 Polarised electronic absorption spectra of synthetic (Mg, Fe)-orthopyroxenes ferrosilite and Fe3+-bearing ferrosilite; Phys. Chem. Miner. 16(2) 120–129.

    Article  Google Scholar 

  • Steinier J, Termonia Y and Deltour J 1972 Smoothing and differentiation of data by simplified least square procedure; Anal. Chem. 44(11) 1906–1909.

    Article  Google Scholar 

  • Sunshine J M and Pieters C M 1998 Determining the composition of olivine from reflectance spectroscopy; J. Geophys. Res. Planets 103(E6) 13,675–13,688.

    Article  Google Scholar 

  • Sunshine J M, Pieters C M and Pratt S F 1990 Deconvolution of mineral absorption bands: An improved approach; J. Geophys. Res. Solid Earth 95(B5) 6955–6966.

    Article  Google Scholar 

  • Takazawa E, Okayasu T and Satoh K 2003 Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite northern Fizh block; Geochem. Geophys. 4(2).

  • Van der Meer F 2006 The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery; Int. J. Appl. Earth Obs. Geoinf. 8(1) 3–17.

    Google Scholar 

  • Venkataramana P, Datta A K and Acharyya S K 1986 Petrography and petrochemistry; Geol. Surv. India Memoir 119 33–634.

    Google Scholar 

  • Wang J, He T, Lv C, Chen Y and Jian W 2010 Mapping soil organic matter based on land degradation spectral response units using Hyperion images; Int. J. Appl. Earth Obs. Geoinf. 12 S171–S180.

    Google Scholar 

  • Zhong Y, Wang X, Wang S and Zhang L 2021 Advances in space-borne hyperspectral remote sensing in China; Geo-Spat. Inf. Sci. 24(1) 95–120.

    Article  Google Scholar 

Download references

Acknowledgements

The paper constitutes a part of the doctoral thesis work of Libeesh Lukose, for which he acknowledges funding from the Indian Space Research Organization (ISRO) (Grant Nos. IIT/KCSTC/Chair./New Appr./15-16/09; IIT/KCSTC/Chair./New/P/18-19/01) to undertake geological fieldwork and analytical work and the infrastructural support from the Head, Department of Geology & Geophysics, IIT Kharagpur. We acknowledge the help of Aliba Ao, Anamitra Dasgupta, Bisworanjan Pradhan, and the National Centre for Earth Science Studies (NCESS), Thiruvananthapuram, for geological fieldwork, microphotography, EPMA, and XRF analytical work. The reflectance spectroscopy data were generated in the laboratory of RRSC-E ISRO Kolkata. Comments from two anonymous reviewers and competent editorial handling by Prof. S Dasgupta helped us to improve the manuscript. The work is an outcome of the joint collaborative research project between ISRO and IIT Kharagpur, for which SKB and DD sincerely appreciate the efforts of Dr Ganesh Raj (Scientist ISRO) and Prof. D Roychowdhury (former Chairman, KCSTC, IIT Kharagpur) to implement the collaboration.

Author information

Authors and Affiliations

Authors

Contributions

LL: Field data collection, laboratory reflectance data generation, processing and interpretation of results and drafting of the original and revised manuscript. DD: Supervision of generation of laboratory reflectance spectra, interpretation of results, and editing of the draft manuscript. MR: Field data collection, the petrographic study of rock samples, generation of bulk geochemical and mineral chemical data, interpretation; AG: Interpretations and drafting manuscript. SKB: Conceptualisation of work, supervision of field data and laboratory chemical data collection, interpretations of results, drafting of the original and revised manuscript.

Corresponding author

Correspondence to Libeesh Lukose.

Additional information

Communicated by Somnath Dasgupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukose, L., Dutta, D., Rajkakati, M. et al. The reflectance spectroscopy of ultramafic rocks from the Nagaland Ophiolite Complex, NE India: Convergence of spectroscopic and petrological analyses. J Earth Syst Sci 132, 96 (2023). https://doi.org/10.1007/s12040-023-02095-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02095-0

Keywords

Navigation