Skip to main content

Advertisement

Log in

Reflectance Spectroscopy of Hydrothermal Alteration Zones Developed Around Auriferous Reefs Hosted in Hutti-Maski Greenstone Belt, India: A Tool for Exploring Precious Metals

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This work attempts to study the spectral characteristics of the hydrothermal alteration zones developed around the auriferous reefs in the spectral range of 350 nm to 2500 nm. The samples representing proximal alteration, distal alteration and unaltered host rock were collected from four reefs (Oakley’s reef, Strike reef, Zone I reef and Middle reefs) exposed in the Hutti Underground Mine, India. All the auriferous reefs are hosted in amphibolite, except the Middle reef, which occurs in acid volcanic rock. Spectral characterization of the continuum-removed average whole-rock reflectance spectra of the samples was carried out with ENVI software, followed by spectral deconvolution in Origin Pro software. The resulting absorption features were correlated with the mineralogy obtained from XRD and petrographic studies. It is noted that the abundance of chlorite, amphibole and calcite are key to differentiate the alteration zones developed around the reefs hosted in amphibolite. The diagnostic spectral features can identify chlorite and amphibolite at 2250 nm, 2340 nm, and 2310 and 2390 nm, respectively. A comparison of absorption band depth and XRD-derived semi-quantitative mineral abundances showed that band depths of 2250 nm and 2390 nm can be used to measure the abundance of chlorite and amphibole in the sample. The 2340 nm feature is influenced by chlorite ± biotite + calcite. The abundance of chlorite shows a decrease from the proximal zone towards the unaltered host rock, whereas the abundance of amphibole is low in the proximal alteration zone and increases towards the unaltered host rock. In the case of acid volcanic rocks, the sericite controls the spectral characteristics, with a diagnostic absorption feature at 2206 nm. The above spectral characteristics can be used as a guide for exploring gold mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, J. B. (1974). Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. Journal of Geophysical Research, 79(32), 4829–4836. https://doi.org/10.1029/JB079i032p04829

    Article  Google Scholar 

  • Badhe, K. V., & Pandalai, H. S. (2015). Investigations on the possible re-equilibration of aqueous fluid inclusions in Barite: A study of barite and calcite from the Hutti Gold Deposit, Karnataka, India. Acta Geologica Sinica—English Edition, 89(3), 715–725. https://doi.org/10.1111/1755-6724.12474

    Article  Google Scholar 

  • Badhe, K. V., & Pandalai, H. S. (2019). Alteration assemblages and P-T during the second phase of hydrothermal mineralization in the Hutti gold deposit, Raichur District, Karnataka. Journal of the Geological Society of India, 93(5), 546–554. https://doi.org/10.1007/s12594-019-1216-7

    Article  Google Scholar 

  • Bhattacharya, S., Kumar, H., Guha, A., Dagar, A. K., Pathak, S., Mondal, S., Vinod Kumar, K., Farrand, W., Chatterjee, S., Ravi, S., Sharma, A. K., & Rajawat, A. S. (2019). Potential of airborne hyperspectral data for geo-exploration over parts of different geological/metallogenic provinces in India based on AVIRIS-NG observations. Current Science, 116(7), 1143. https://doi.org/10.18520/cs/v116/i7/1143-1156

    Article  Google Scholar 

  • Bishop, J. L., Lane, M. D., Dyar, M. D., & Brown, A. J. (2008). Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43(1), 35–54. https://doi.org/10.1180/claymin.2008.043.1.03

    Article  Google Scholar 

  • Bishop, J. L., Murad, E., & Dyar, M. D. (2002). The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Minerals, 37(4), 617–628. https://doi.org/10.1180/0009855023740064

    Article  Google Scholar 

  • Burns, R. G. (1985). Electronic spectra of minerals. In F. J. Berry & D. J. Vaughan (Eds.), Chemical bonding and spectroscopy in mineral chemistry (pp. 63–101). Netherlands: Springer. https://doi.org/10.1007/978-94-009-4838-9_3

    Chapter  Google Scholar 

  • Burns, R. G. (1970) Site preferences of transition metal ions in silicate crystal structures. Chemical Geology, 5(4), 275–283. https://doi.org/10.1016/0009-2541(70)90045-8

    Article  Google Scholar 

  • Burns, R. G. (1993). Mineralogical applications of crystal field theory (2nd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511524899

    Book  Google Scholar 

  • Clark, R. N. Roush, T. L. (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research: Solid Earth, 89(B7) 6329–6340. https://doi.org/10.1029/JB089iB07p06329

    Article  Google Scholar 

  • Clark, R. N., Gallagher, A. J., & Swayze, G. A. (1990a). Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. In Proceedings of the second airborne visible/infrared imaging spectrometer (AVIRIS) workshop (Vol. 90, pp. 176–186).

  • Clark, R. N. (1999). Spectroscopy of rocks and minerals and principles of spectroscopy. In A. N. Rencz (Ed.), Manual of remote sensing, Volume 3, Remote sensing for the earth sciences (pp. 3–58). Wiley; USGS Publications Warehouse. http://pubs.er.usgs.gov/publication/70196852

  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990b). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95(B8), 12653. https://doi.org/10.1029/JB095iB08p12653

    Article  Google Scholar 

  • De La Rosa, R., Khodadadzadeh, M., Tusa, L., Kirsch, M., Gisbert, G., Tornos, F., Tolosana-Delgado, R., & Gloaguen, R. (2021). Mineral quantification at deposit scale using drill-core hyperspectral data: A case study in the Iberian Pyrite Belt. Ore Geology Reviews, 139, 104514. https://doi.org/10.1016/j.oregeorev.2021.104514

    Article  Google Scholar 

  • Farmer, V. C. (Ed.). (1974). The infrared spectra of minerals. Mineralogical Society of Great Britain and Ireland. https://doi.org/10.1180/mono-4

  • Faye, G. H. (1968). The optical absorption spectra of iron in six-coordinate sites in chlorite, biotite, phlogopite and vivianite; some aspects of pleochroism in the sheet silicates. The Canadian Mineralogist, 9(3), 403–425.

    Google Scholar 

  • Goehner, R. P. (1981). X-ray diffraction quantitative analysis using intensity ratios and external standards. Advances in X-Ray Analysis, 25, 309–313. https://doi.org/10.1154/S0376030800009915

    Article  Google Scholar 

  • Goetz, A. F. H., Vane, G., Solomon, J. E., & Rock, B. N. (1985). Imaging spectrometry for earth remote sensing. Science, 228(4704), 1147–1153. https://doi.org/10.1126/science.228.4704.1147

    Article  Google Scholar 

  • Guha, A., Kumar, K. V., Rao, E. N. D., & Parveen, R. (2014). An image processing approach for converging ASTER-derived spectral maps for mapping Kolhan limestone, Jharkhand, India. Current Science, 106(1), 10.

    Google Scholar 

  • Guha, A., & Vinod Kumar, K. (2014). Potential of thermal emissivity for mapping of greenstone rocks and associated granitoids of Hutti Maski Schist belt, Karnataka. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–8, 423–430. https://doi.org/10.5194/isprsarchives-XL-8-423-2014

    Article  Google Scholar 

  • Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N., & Pontual, S. (2001). Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at rosebery and Western Tharsis, Tasmania, and highway-reward, Queensland. Economic Geology, 96(5), 939–955. https://doi.org/10.2113/gsecongeo.96.5.939

    Article  Google Scholar 

  • Hunt, G. R. (1970). Visible and near-infrared spectra of minerals and rocks: I silicate minerals.

  • Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501–513. https://doi.org/10.1190/1.1440721

    Article  Google Scholar 

  • Hunt, G. R. (1979). Near-infrared (1.3–2.4) μm spectra of alteration minerals—Potential for use in remote sensing. Geophysics, 44(12), 1974–1986. https://doi.org/10.1190/1.1440951

    Article  Google Scholar 

  • King, T. V. V., & Clark, R. N. (1989). Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. Journal of Geophysical Research: Solid Earth, 94(B10), 13997–14008. https://doi.org/10.1029/JB094iB10p13997

    Article  Google Scholar 

  • Kolb, J., Rogers, A., & Meyer, F. M. (2005). Relative timing of deformation and two-stage gold mineralization at the Hutti Mine, Dharwar Craton, India. Mineralium Deposita, 40(2), 156–174. https://doi.org/10.1007/s00126-005-0475-y

    Article  Google Scholar 

  • Kruse, F. A., Bedell, R. L., Taranik, J. V., Peppin, W. A., Weatherbee, O., & Calvin, W. M. (2012). Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry. International Journal of Remote Sensing, 33(6), 1780–1798. https://doi.org/10.1080/01431161.2011.600350

    Article  Google Scholar 

  • Kumar, C., Chatterjee, S., & Oommen, T. (2020). Mapping hydrothermal alteration minerals using high-resolution AVIRIS-NG hyperspectral data in the Hutti-Maski gold deposit area, India. International Journal of Remote Sensing, 41(2), 794–812. https://doi.org/10.1080/01431161.2019.1648906

    Article  Google Scholar 

  • Laukamp, C., Termin, K. A., Pejcic, B., Haest, M., & Cudahy, T. (2012). Vibrational spectroscopy of calcic amphiboles—Applications for exploration and mining. European Journal of Mineralogy, 24(5), 863–878. https://doi.org/10.1127/0935-1221/2012/0024-2218

    Article  Google Scholar 

  • Lypaczewski, P., Rivard, B., Lesage, G., Byrne, K., D’Angelo, M., & Lee, R. G. (2020). Characterization of mineralogy in the highland valley porphyry cu district using hyperspectral imaging, and potential applications. Minerals, 10(5), Article 5. https://doi.org/10.3390/min10050473

  • Manikyamba, C., Kerrich, R., Khanna, T. C., Satyanarayanan, M., & Krishna, A. K. (2009). Enriched and depleted arc basalts, with Mg-andesites and adakites: A potential paired arc–back-arc of the 2.6 Ga Hutti greenstone terrane, India. Geochimica Et Cosmochimica Acta, 73(6), 1711–1736. https://doi.org/10.1016/j.gca.2008.12.020

    Article  Google Scholar 

  • Mishra, B., & Pal, N. (2008). Metamorphism, fluid flux, and fluid evolution relative to gold mineralization in the Hutti-Maski Greenstone Belt, Eastern Dharwar Craton, India. Economic Geology, 103(4), 801–827. https://doi.org/10.2113/gsecongeo.103.4.801

    Article  Google Scholar 

  • Mustard, J. F. (1992). Chemical analysis of actinolite from reflectance spectra. American Mineralogist, 77(3–4), 345–358.

    Google Scholar 

  • Neal, L. C., Wilkinson, J. J., Mason, P. J., & Chang, Z. (2018). Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. Journal of Geochemical Exploration, 184, 179–198. https://doi.org/10.1016/j.gexplo.2017.10.019

    Article  Google Scholar 

  • Pal, N., & Mishra, B. (2002). Alteration geochemistry and fluid inclusion characteristics of the greenstone-hosted gold deposit of Hutti, Eastern Dharwar Craton, India. Mineralium Deposita, 37(8), 722–736. https://doi.org/10.1007/s00126-002-0257-8

    Article  Google Scholar 

  • Pazand, K., & Pazand, K. (2020). Identification of hydrothermal alteration minerals for exploring porphyry copper deposit using ASTER data: A case study of Varzaghan area, NW Iran. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2020.1813371

    Article  Google Scholar 

  • Post, J. L., & Noble, P. N. (1993). The near-infrared combination band frequencies of dioctahedral smectites, micas, and illites. Clays and Clay Minerals, 41(6), 639–644. https://doi.org/10.1346/CCMN.1993.0410601

    Article  Google Scholar 

  • Ramsey, M. S., & Christensen, P. R. (1998). Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research: Solid Earth, 103(B1), 577–596. https://doi.org/10.1029/97JB02784

    Article  Google Scholar 

  • Rogers, A. J., Kolb, J., Meyer, F. M., & Armstrong, R. A. (2007). Tectono-magmatic evolution of the Hutti-Maski Greenstone Belt, India: Constrained using geochemical and geochronological data. Journal of Asian Earth Sciences, 31(1), 55–70. https://doi.org/10.1016/j.jseaes.2007.04.003

    Article  Google Scholar 

  • Rogers, A. J., Kolb, J., Meyer, F. M., & Vennemann, T. (2013). Two stages of gold mineralization at Hutti mine, India. Mineralium Deposita, 48(1), 99–114. https://doi.org/10.1007/s00126-012-0416-5

    Article  Google Scholar 

  • Sangurmath, P. (2021). World class Hutti gold deposit—An archean orogenic gold deposit in Hutti-Maski Greenstone Belt, Karnataka, India. In Geological and geo-environmental processes on earth (1st edn., pp. 75–89). https://doi.org/10.1007/978-981-16-4122-0_6

  • Sarma, D. S., Mcnaughton, N. J., Fletcher, I. R., Groves, D. I., Mohan, M. R., & Balaram, V. (2008). Timing of gold mineralization in the Hutti gold deposit, Dharwar Craton, South India. Economic Geology, 103(8), 1715–1727. https://doi.org/10.2113/gsecongeo.103.8.1715

    Article  Google Scholar 

  • Shandilya, A. K., Singh, V. K., Bhatt, S. C., & Dubey, C. S. (2021). Geological and geo-environmental processes on earth (1st ed.). Singapore: Springer. https://doi.org/10.1007/978-981-16-4122-0

    Book  Google Scholar 

  • Sherman, D. M. (1990). Crystal chemistry, electronic structures, and spectra of Fe sites in clay minerals, 26.

  • Sherman, D. M. (1985). The electronic structures of Fe3+ coordination sites in iron oxides: Applications to spectra, bonding, and magnetism. Physics and Chemistry of Minerals, 12(3), 161–175. https://doi.org/10.1007/BF00308210

    Article  Google Scholar 

  • Sherman, D. M., & Waite, T. D. (1985). Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70(11–12), 1262–1269.

    Google Scholar 

  • Solankar, S., Ganesh, R., Anilkumar, B., et al. (2021). Current status of exploration and resources of Hutti Gold Mines, Hutti-Maski Schist Belt, Karnataka. In Conference GSI (pp. 75–81).

  • Srikantia, S. V. (1995). Geology of the Hutti-Maski greenstone belt. In L. C. Curtis & B. P. Radhakrishna (Eds.), Hutti gold mine—into the 21st century (pp. 8–27). Geological Society of India.

    Google Scholar 

  • Sunshine, J. M. Pieters, C. M. Pratt, SF. (1990) Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research, 95(B5) 6955. https://doi.org/10.1029/JB095iB05p06955

    Article  Google Scholar 

  • Uehara, S., & Shirozu, H. (1985). Variations in chemical composition and structural properties of antigorites. Mineralogical Journal, 12(7), 299–318. https://doi.org/10.2465/minerj.12.299

    Article  Google Scholar 

  • van der Meer, F., & de Jong, S. M. (2006). Imaging spectrometry (1st ed.). Springer.

    Google Scholar 

  • van der Meer, F., Kopačková, V., Koucká, L., van der Werff, H. M. A., van Ruitenbeek, F. J. A., & Bakker, W. H. (2018). Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system. International Journal of Applied Earth Observation and Geoinformation, 64, 237–248. https://doi.org/10.1016/j.jag.2017.09.008

    Article  Google Scholar 

  • Wilkinson, J. J., Chang, Z., Cooke, D. R., Baker, M. J., Wilkinson, C. C., Inglis, S., Chen, H., & Bruce Gemmell, J. (2015). The chlorite proximitor: A new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration, 152, 10–26. https://doi.org/10.1016/j.gexplo.2015.01.005

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Department of Science and Technology, (DST), Govt. of India for the research grant to carry out the research work (BDID/01/23/2014-HSRS/03). Corresponding author acknowledge Prof. D. Ramakrishnan, Department of Earth Sciences, IIT Bombay, for extending facility for collection of reflectance spectra of the samples. Authors are indebted to Dr. Sangurmath (former Executive Director), and other geologists of HGML for extending their support in sample collection from the Hutti underground mine. The authors also express their sincere thanks to Prof. Pramod Singh, for his constructive suggestions during manuscript preparation.

Funding

This work was completed using the research grant receiveed from Department of Science and Technology, (DST), Govt. of India (BDID/01/23/2014-HSRS/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Kusuma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4138 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathvaj, S.A., Kusuma, K.N., Chaudhuri, N. et al. Reflectance Spectroscopy of Hydrothermal Alteration Zones Developed Around Auriferous Reefs Hosted in Hutti-Maski Greenstone Belt, India: A Tool for Exploring Precious Metals. J Indian Soc Remote Sens 51, 149–163 (2023). https://doi.org/10.1007/s12524-022-01626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01626-4

Keywords

Navigation