Skip to main content

Advertisement

Log in

Volcanic craters and cones in central Kachchh mainland, western India: Potential analogue for the Martian studies?

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The magmatism in Kachchh is associated with the northwestern Deccan Continental Flood Basalt Province (CFB) (~65–68 Ma). They form the base of the local Deccan stratigraphy, and their volcanological context is poorly understood. Apart from the flow, there are isolated hills of volcanic rocks, which have stood against the erosional processes that occurred in the basin. This paper provides an overview of features indicative of the interaction between water and lava and/or magma in Kachchh and their suitability as analogue for Mars. We have surveyed <22 craters/cones within the basin for their relevancy as planetary analogue. Evaluated during field investigations and satellite imagery for structures, physiography, and geologic setting concerning climate change from its evolution. The weathering profile and altered aqueous minerals are also proven analogues from the basin. We propose the Dhinodhar, Varar, and other basaltic vents as an analogue for the Ceraunius, Hecates Tholus, and Volcanic Rootless Constructs (VRCs) of Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Ahmad A and Nair A M 2021 Landform evolution of Tharsis Montes and Olympus Mons of Mars: Insights from morphometric, hypsometric and chronologic evidences; J. Earth Syst. Sci. 130(3) 1–20.

    Article  Google Scholar 

  • Arya A S, Sarkar S S, Srinivas A R, Manthira Moorthi S, Patel V D, Singh R B and Rajasekhar R P 2015 Mars Colour Camera: The payload characterization/calibration and data analysis from Earth imaging phase; Curr. Sci. 109(6) 1076.

    Article  Google Scholar 

  • Baker V R, Strom R G, Gulick V C, Kargel J C, Komatsu G and Kale V S 1991 Ancient oceans, ice sheets and the hydrological cycle on Mars; Nature 352 589–594.

    Article  Google Scholar 

  • Baksi A K 1987 Critical evaluation of the age of the Deccan Traps, India: Implications for flood-basalt volcanism and faunal extinctions; Geology 15 147–150.

    Article  Google Scholar 

  • Baksi A K 2014 The Deccan Trap–Cretaceous–Paleogene boundary connection; new 40Ar/39Ar ages and critical assessment of existing argon data pertinent to this hypothesis; J. Asian Earth Sci. 84 9–23.

    Article  Google Scholar 

  • Bhattacharya S, Mitra S, Gupta S, Jain N, Chauhan P and Parthasarathy G 2016 Jarosite occurrence in the Deccan Volcanic Province of Kachchh, western India: Spectroscopic studies on a Martian analog locality; J. Geophys. Res. Planets 121(3) 402–431.

    Article  Google Scholar 

  • Biswas S K 1993 Geology of Kachchh; KD Malaviya Institute of Petroleum Exploration, Dehradun, 450p.

  • Biswas S K 2016a Mesozoic and tertiary stratigraphy of Kutch*(Kachchh) – a review; In: Conference GSI., pp. 1–24, https://doi.org/10.17491/cgsi/2016a/105405.

  • Biswas S K 2016b Tectonic framework, structure and tectonic evolution of Kutch Basin, western India; In: Conference GSI, pp. 129–150, https://doi.org/10.17491/cgsi/2016b/105417.

  • Biswas S K and Deshpande S V 1973 A note on the mode of eruption of the Deccan Trap lavas with special reference to Kutch; Geol. Soc. India 14(2) 134–141.

    Google Scholar 

  • Bleacher J E, Glaze L S, Greeley R, Hauber E, Baloga S M, Sakimoto S E H, Williams D A and Glotch T D 2009 Spatial and alignment analyses for a field of small volcanic vents south of Pavonis Mons and implications for the Tharsis province, Mars; J. Volcanol. Geotherm. Res. 185 96–102.

    Article  Google Scholar 

  • Bleacher J E, Greeley R, Williams D A, Cave S R and Neukum G 2007a Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province; J. Geophys. Res. 112 E09005, https://doi.org/10.1029/2006JE002873.

    Article  Google Scholar 

  • Bleacher J E, Greeley R, Williams D A, Werner S C, Hauber E and Neukum G 2007b Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data; J. Geophys. Res. 112 E04003, https://doi.org/10.1029/2006JE002826.

    Article  Google Scholar 

  • Bruno B C, Fagents S A, Hamilton C W, Burr D M and Baloga S M 2006 Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: Using spatial distribution as a remote sensing tool; J. Geophys. Res. E: Planets 111(6), https://doi.org/10.1029/2005JE002510.

  • Burr D M, Bruno B C, Lanagan P D, Glaze L S, Jaeger W L, Soare R J, Tseung J M, Skinner J A Jr and Baloga S M 2009a Mesoscale raised rim depressions (MRRDs) on Earth: A review of the characteristics, processes, and spatial distributions of analogs for Mars; Planet. Space Sci. 57(5–6) 579–596.

    Article  Google Scholar 

  • Burr D M, Tanaka K L and Yoshikawa K 2009b Pingos on Earth and Mars; Planet. Space Sci. 57(5–6) 541–555.

    Article  Google Scholar 

  • Campbell I H and Griffiths R W 1990 Implications of mantle plume structure for the evolution of flood basalts; Earth Planet. Sci. Lett. 99(1–2) 79–93.

    Article  Google Scholar 

  • Carr M H 1973 Volcanism on marsL; J. Geophys. Res. 78(20) 4049–4062.

    Article  Google Scholar 

  • Carr M H 1974 Tectonism and volcanism of the Tharsis region of Mars; J. Geophys. Res. 79(26) 3943–3949.

    Article  Google Scholar 

  • Carr M H 1996 Water on Mars; Oxford University Press, New York, 248p.

  • Carr M H and Head J W 2003 Oceans on Mars: An assessment of the observational evidence and possible fate; J. Geophys. Res. 108 5042, https://doi.org/10.1029/2002JE001963.

    Article  Google Scholar 

  • Carr M H and Head J W 2010 Geologic history of Mars; Earth Planet. Sci. Lett. 294(3–4) 185–203, https://doi.org/10.1016/j.epsl.2009.06.042.

    Article  Google Scholar 

  • Chauhan G, Biswas S K, Thakkar M G and Page K N 2021 The Unique Geoheritage of the Kachchh (Kutch) Basin, western India, and its conservation; Geoheritage 13(1) 1–34.

    Article  Google Scholar 

  • Chavan A A and Bhandari S B 2019 Potential terrestrial geomorphic analogues from Kachchh Rift Basin, western India to Mars; 9th Internal. Conf. on Mars, Lunar Planet. Sci. Contrib. Rept. 2089, 6076p.

  • Chavan A A, Bhore V K and Bhandari S L 2021a Morphometric analysis of Alaldari Valley western Deccan Traps: Implications for the martian analogue studies; LPI Contributions 2595 8056.

    Google Scholar 

  • Chavan A, Sarkar S, Thakkar A and Bhandari S 2021b A new method of Mosaicking Context Camera (CTX) images for the geomorphological study of Martian landscape; Open J. Geol. 11 373–380.

    Article  Google Scholar 

  • Chowksey V, Maurya D M, Joshi P, Khonde N, Das A and Chamyal L S 2011 Lithostratigraphic development and neotectonic significance of the Quaternary sediments along the Kachchh Mainland Fault (KMF) zone, western India; J. Earth Syst. Sci. 120(6) 979–999.

    Article  Google Scholar 

  • Christensen P R, Jakosky B M, Kieffer H H, Malin M C, Mcsween H Y, Nealson K and Ravine M 2004 The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission; Space Sci. Rev. 110(1) 85–130, https://doi.org/10.1023/B:SPAC.0000021008.16305.94.

    Article  Google Scholar 

  • Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger J J and Cappetta H 1986 Deccan flood basalts at the Cretaceous/Tertiary boundary?; Earth Planet. Sci. Lett. 80 361–374.

    Article  Google Scholar 

  • Craig P, Chevrier V, Sayyed M R and Islam R 2017 Spectral analysis of Deccan intrabasaltic bole beds: Implications for the formation and alteration of phyllosilicates on Mars; Planet. Space Sci. 135 55–63.

    Article  Google Scholar 

  • Crumpler L S, Head J W and Aubele J C 1996 Calderas on Mars: Characteristics, structural evolution, and associated flank structures; In: Volcano instability on the Earth and other planets (eds) McGuire W C, Jones A P and Neuberg J, Geol. Soc. London Spec. Publ. 110 307–348.

  • Dabhi M, Chavan A, Thakkar A, Chauhan G, Bhagora R, Chauhan N, Shukla A D and Bhandari S 2021 Climatic history from early Weichselian (MIS 5D-C) valley-fill deposits and associated factors for basin sedimentation, mainland Kachchh, western India; Quat. Int., https://doi.org/10.1016/j.quaint.2021.10.019.

    Article  Google Scholar 

  • De A 1981 Late Mesozoic–Lower Tertiary magma types of Kutch and Saurashtra; In: Deccan volcanism and related basalt provinces in other parts of the world (eds) Subbarao K V and Sukheswala R N, Geol. Soc. India Memoir 3 327–339.

  • Dundas C M and McEwen A S 2010 An assessment of evidence for pingos on Mars using HiRISE; Icarus 205 244–258.

    Article  Google Scholar 

  • Fagents S A and Thordarson T 2007 Rootless volcanic cones in Iceland and on Mars; In: Chapman M G (ed.) The geology of Mars: Evidence from earth-based analogs; Cambridge Univ. Press, Cambridge, UK, pp. 151–177.

    Chapter  Google Scholar 

  • Fagents S A, Lanagan P and Greeley R 2002 Rootless cones on Mars: A consequence of lava‐ground ice interaction; In: Volcano‐ice interaction on Earth and Mars (eds) Smellie J L and Chapman M G; Geol. Soc. Spec. Publ. 202 295–317.

  • Farr T G, Arcone S, Arvidson R E, Baker V and Yoshikawa K et al. 2002 Terrestrial analogs to Mars; In: The Future of Solar System Exploration, 2003–2013 (ed.) Sykes M V, Community Contributions to the NRC Solar System Exploration Decadal Survey, Vol. 272, Astron. Soc. Pac. Conf. Series, pp. 35–76.

  • Farrand W H, Gaddis L R and Keszthelyi L 2005 Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data; J. Geophys. Res.: Planets 110(E5).

  • Fassett C I and Head J W 2006 Valleys on Hecates Tholus Mars: Origin by basal melting of summit snowpack; Planet Space Sci. 54 370–378, https://doi.org/10.1016/j.pss.2005.12.011.

    Article  Google Scholar 

  • Fassett C I and Head J W 2007 Valley formation on martian volcanoes in the Hesperian: Evidence for melting of summit snowpack, caldera lake formation, drainage and erosion on Ceraunius Tholus Mars; Icarus 189 118–135, https://doi.org/10.1016/j.icarus.2006.12.021.

    Article  Google Scholar 

  • Frey H, Lowry B L and Chase S A 1979 Pseudocraters on Mars; J. Geophys. Res. 8 8075–8086.

    Article  Google Scholar 

  • Greeley R and Fagents S A 2001 Icelandic pseudocraters as analogs to some volcanic cones on Mars; J. Geophys. Res. 106 20,527–20,546.

    Article  Google Scholar 

  • Greeley R and Spudis P 1981 Volcanism on Mars; Rev. Geophys. Space Phys. 19 13–41.

    Article  Google Scholar 

  • Greenberger R N, Mustard J F, Kumar P S, Dyar M D, Breves E A and Sklute E C 2012 Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars; J. Geophys. Res.: Planets 117(E11).

  • Grott M, Baratoux D, Hauber E, Sautter V, Mustard J, Gasnault O, Ruff S W, Karato S I, Debaille V, Knapmeyer M, Sohl F, Van Hoolst T, Breuer D, Morschhauser A and Toplis M J 2013 Long-term evolution of the martian crust-mantle system; Space Sci Rev. 174 49–111, https://doi.org/10.1007/s11214-012-9948-3.

    Article  Google Scholar 

  • Guha D, Das S, Srikarni C and Chakraborty S K 2005 Alkali basalt of Kachchh: Its implication in the tectonic framework of Mesozoic of western India; J. Geol. Soc. India 66 599–608.

    Google Scholar 

  • Gulick V C 2001 Origin of the valley networks on Mars: A hydrologic perspective; Geomorphology 37 241–268.

    Article  Google Scholar 

  • Gulick V C and Baker V R 1989 Fluvial valleys and martian paleoclimates; Nature 341 514–516.

    Article  Google Scholar 

  • Gulick V C and Baker V R 1990 Origin and evolution of valleys on Martian volcanoes; J. Geophys. Res. 95 14,325–14,344.

    Article  Google Scholar 

  • Hamilton C W, Fagents S A and Wilson L 2010 Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups; J. Geophys. Res.: Planets 115(E9).

  • Hamilton C W, Fagents S A and Thordarson T 2011 Lava–ground ice interactions in Elysium Planitia, Mars: Geomorphological and geospatial analysis of the Tartarus Colles cone groups; J. Geophys. Res.: Planets 116(E3).

  • Hartmann W K 2005 Martian cratering. Isochron refinement and the chronology of Mars; Icarus 174 294–320.

    Article  Google Scholar 

  • Hartmann W K and Berman D C 2000 Elysium Planitia lava flows: Crater count chronology and geological implications; J. Geophys. Res. 105 15,011–15,025.

    Article  Google Scholar 

  • Hauber E, Bleacher J, Gwinner K, Williams D and Greeley R 2009 The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars; J. Volcanol. Geotherm. Res. 185 69–95, https://doi.org/10.1016/j.jvolgeores.2009.04.015.

    Article  Google Scholar 

  • Hauber E, Brož P, Jagert F, Jodłowski P and Platz T 2011 Very recent and wide-spread basaltic volcanism on Mars; Geophys. Res. Lett. 28 L10201, https://doi.org/10.1029/2011GL047310.

    Article  Google Scholar 

  • Hauber E, van Gasselt S, Ivanov B, Werner S, Head J W, Neukum G, Jaumann R, Greeley R, Mitchell K L, Muller P and the HRSC Co-Investigator Team 2005 Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars; Nature 434 356–361.

  • Head J W and Coffin M F 1997 Large igneous provinces: A planetary perspective; In: Large igneous provinces: Continental, oceanic, and planetary flood volcanism; AGU Geophys. Monogr. 100 411–438.

  • Head J W, Neukum G, Jaumann R, Hiesinger H, Hauber E, Carr M, Masson P, Foing B, Hoffmann H, Kreslavsky M and Werner S 2005 Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars; Nature 434(7031) 346–351.

    Article  Google Scholar 

  • Hodges C A and Moore H J 1994 Atlas of volcanic landforms on Mars; U.S. Geol. Surv. Prof. Paper 1534.

  • Hughes S S, Garry W B, Sehlke A, Christiansen E H, Nawotniak S E, Sears D W, Elphic R C, Lim D S and Heldmann J L 2020 Basaltic fissure types on Earth: Suitable analogs to evaluate the origins of volcanic terrains on the Moon and Mars?; Planet. Space Sci. 193 105091.

    Article  Google Scholar 

  • Jaeger W L, Keszthelyi L P, McEwen A S, Dundas C M and Russell P S 2007 Athabasca Valles, Mars: A lava-draped channel system; Science 17(5845) 1709–1711.

    Article  Google Scholar 

  • Jurado-Chichay Z, Rowland S K and Walker G P L 1996 The formation of circular littoral cones from tube-fed pahoehoe; Mauna Loa, Hawaii; Bull. Volcanol. 57 471–482.

    Google Scholar 

  • Kangi A 2007 The role of mud volcanoes in the evolution of Hecates Tholus volcano on the surface of Mars; Acta Astron. 60 719–722, https://doi.org/10.1016/j.actaastro.2006.10.004.

    Article  Google Scholar 

  • Karmalkar N R, Rege S, Griffin W L and O’Reilly S Y 2005 Alkaline magmatism from Kutch, NW India: Implications for plume–lithosphere interaction; Lithos 81 101–119.

    Article  Google Scholar 

  • Keszthelyi L P, Jaeger W L, Dundas C M, Martínez-Alonso S, McEwen A S and Milazzo M P 2010 Hydrovolcanic features on Mars: Preliminary observations from the first Mars year of HiRISE imaging; Icarus 205(1) 211–229.

    Article  Google Scholar 

  • Krishnamurthy P, Pande K, Gopalan K and Macdougall J D 1999 Mineralogical and chemical studies on alkaline basaltic rocks of Kutch, Gujarat, India; In: Deccan volcanic province (ed.) Subbarao K V, Geol. Soc. India Memoir 43(2) 757–783.

  • Kshirsagar P V, Sheth H C and Shaikh B 2010 Mafic alkalic magmatism in central Kachchh, India: A monogenetic volcanic field in the northwestern Deccan Traps; Bull. Volcanol. 73(5) 595–612, https://doi.org/10.1007/s00445-010-0429-9.

    Article  Google Scholar 

  • Lanagan P D, McEwen A S, Keszthelyi L P and Thordarson T 2001 Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times; Geophys. Res. Lett. 28(12) 2365–2367.

    Article  Google Scholar 

  • Mahoney J J 1988 Deccan traps; In: Continental flood basalts (ed.) Macdougall J D, Kluwer, Dordrecht pp. 151–194.

    Chapter  Google Scholar 

  • Malin M C, Bell J F, Cantor B A, Caplinger M A, Calvin W M, Clancy R T and Wolff M J 2007 Context Camera Investigation onboard the Mars Reconnaissance Orbiter; J. Geophys. Res. E: Planets 112(5) 1–25, https://doi.org/10.1029/2006JE002808.

    Article  Google Scholar 

  • Malin M C, Carr M H, Danielson G E, Davies M E, Hartmann W K, Ingersoll A P and Warren J L 1998 Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor; Science 279(5357) 1681–1685, https://doi.org/10.1126/science.279.5357.1681.

    Article  Google Scholar 

  • McEwen A S, Eliason E M, Bergstrom J W, Bridges N T, Hansen C J, Delamere W A, Grant J A, Gulick V C, Herkenhoff K E, Keszthelyi L and Kirk R L 2007 Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE); J. Geophys. Res. Planet. 112(E5), https://doi.org/10.1029/2005JE002605.

  • Milazzo M P, Keszthelyi L P, Jaeger W L, Rosiek M, Mattson S, Verba C, Beyer R A, Geissler P E, McEwen A S and HiRISE Team 2009 Discovery of columnar jointing on Mars; Geology 7(2) 171–174.

  • Morgan W J 1981 Hotspot tracks and the opening of the Atlantic and Indian Oceans; Oceanic Lithosphere 7 443–487.

    Google Scholar 

  • Mouginis-Mark P J 1985 Volcano/ground ice interactions in Elysium Planitia, Mars; Icarus 64 265–284.

    Article  Google Scholar 

  • Mouginis-Mark P J, Wilson L and Head J W 1982 Explosive volcanism on Hecates Tholus, Mars: Investigation of eruption conditions; J. Geophys. Res. 87 9890–9904.

    Article  Google Scholar 

  • Mukherjee A B and Biswas S 1988 Mantle-derived spinel lherzolite xenoliths from the Deccan volcanic province (India): implications for the thermal structure of the lithosphere underlying the Deccan Traps; J. Volcanol. Geotherm Res. 35 269–276.

    Article  Google Scholar 

  • Mukherjee P, Singh C K and Mukherjee S 2012 Delineation of groundwater potential zones in arid region of India – a remote sensing and GIS approach; Water Res. Manag. 26(9) 2643–2672.

    Article  Google Scholar 

  • Murchie S, Arvidson R, Bedini P, Beisser K, Bibring J P, Bishop J, and Wolff M 2007 Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO); J. Geophys. Res. 112 E05S03, https://doi.org/10.1029/2006JE002682.

  • Neukum G, Jaumann R and the HRSC Co‐Investigator and Experiment Team 2004 HRSC: The High Resolution Stereo Camera of Mars Express; Eur. Space Agency Spec. Publ. 1240 17–35.

  • Page D P and Murray J B 2006 Stratigraphical and morphological evidence for pingo genesis in the Cerberus plains; Icarus 183 46–54.

    Article  Google Scholar 

  • Pande K 2002 Age and duration of the Deccan Traps, India: A review of radiometric and paleomagnetic constraints; Proc. Indian Acad. Sci.: Earth Planet Sci. 111 115–124.

    Google Scholar 

  • Pande K, Venkatesan T R, Gopalan K, Krishnamurthy P and Macdougall J D 1988 40Ar–39Ar ages of alkali basalts from Kutch, Deccan volcanic province, India; In: Deccan flood basalts (ed.) Subbarao K V, Geol. Soc. India Memoir 10 145–150.

  • Paul D K, Ray A, Das B, Patil S K and Biswas S K 2008 Petrology, geochemistry and palaeomagnetism of the earliest magmatic rocks of Deccan volcanic province, Kutch, northwest India; Lithos 102 237–259.

    Article  Google Scholar 

  • Peters S I and Christensen P R 2017 Flank vents and graben as indicators of Late Amazonian volcano-tectonic activity on Olympus Mons; J. Geophys. Res. Planets 122(3) 501–523.

    Article  Google Scholar 

  • Peters S I, Christensen P R and Clarke A B 2021 Lava flow eruption conditions in the Tharsis Volcanic Province on Mars; J. Geophys. Res. Planets 126(7) p.e 2020JE006791.

  • Plescia J B 2000 Geology of the Uranius group volcanic constructs: Uranius Patera, Ceraunius Tholus, and Uranius Tholus; Icarus 143 376–396.

    Article  Google Scholar 

  • Plescia J B 2003 Tharsis Tholus: An unusual Martian volcano; Icarus 165 223–241.

    Article  Google Scholar 

  • Plescia J B 2004 Morphometric properties of Martian volcanoes; J. Geophys. Res. 109 E03003, https://doi.org/10.1029/2002JE002031.

    Article  Google Scholar 

  • Ray D, Shukla A D, Bhattacharya S, Gupta S, Jha P and Chandra U 2021 Hematite concretions from the Late Jurassic Jhuran sandstone, Kutch, western India: Implications for sedimentary diagenesis and origin of ‘blueberries’ on Mars; Planet. Space Sci. 197 105163.

    Article  Google Scholar 

  • Richards M A, Duncan R A and Courtillot V E 1989 Flood basalts and hotspot tracks: Plume heads and tails; Science 246 103–107.

    Article  Google Scholar 

  • Robbins S J, di Achille G and Hynek B M 2011 The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes; Icarus 211 1179–1203.

    Article  Google Scholar 

  • Scott E D and Wilson L 1999 Evidence for a sill emplacement event on the upper flanks of the Ascraeus Mons shield volcano; Mars. J. Geophys. Res. 104 27,079–27,090.

    Article  Google Scholar 

  • Sen G, Bizimis M, Das M, Paul D K, Ray A and Biswas S K 2009 Deccan plume, lithosphere rifting, and volcanism in Kutch, India; Earth Planet. Sci. Lett. 27 101–111.

    Google Scholar 

  • Sheth H C 1999 A historical approach to continental flood basalt volcanism: insights into pre-volcanic rifting, sedimentation, and early alkaline magmatism; Earth Planet. Sci. Lett. 168 19–26.

    Google Scholar 

  • Sheth H C 2005 From Deccan to Réunion: No trace of a mantle plume; In: Plates, Plumes, and Paradigms (eds) Foulger G R, Natland J H, Pre-Snall D C and Anderson D L, Geol. Soc. Am. Spec. Papers 388 477–501.

  • Sheth H C, Mathew G, Pande K and Mallick S 2004 Cones and craters on Mount Pavagadh, Deccan Traps: Rootless cones?; J. Earth Syst. Sci. 113(4) 831–838.

    Article  Google Scholar 

  • Shukla A D, Bhandari N, Kusumgar S, Shukla P N, Ghevariya Z G, Gopalan K and Balaram V 2001 Geochemistry and magneto-stratigraphy of Deccan flows at Anjar, Kutch; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 110 111–132.

  • Shukla A D, Ray D, Pande K and Shukla P N 2014 Formation of paleosol (fossil soil) in Deccan Continental Flood Basalt: Alteration style and implications towards aqueous environment of early Mars; 8th Internal. Conf. on Mars, Lunar Planet. Sci. Contrib. Rept., 1194p.

  • Tanaka K L 1986 The stratigraphy of Mars; J. Geophys. Res. 91 139–158.

    Article  Google Scholar 

  • Tanaka K L, Skinner J A, Jr Dohm J M, Irwin R P, Kolb E J, Fortezzo C M, Platz T, Michael G G and Hare T M 2014 Geologic Map of Mars, U.S.G.S. Scientific Investigations Map 3292; U.S. Geological Survey, Flagstaff, AZ, http://pubs.usgs.gov/sim/3292/pdf/sim3292_map.pdf.

  • Thordarson T, Miller D J and Larsen G 1998 New data on the Leidolfsfell cone group in South Iceland; Jökull. 46 3–15.

    Google Scholar 

  • Thorpe T 1976 The Viking Orbiter cameras’ potential for photometric measurement; Icarus 27(2) 229–239, https://doi.org/10.1016/0019-1035(76)90006-3.

    Article  Google Scholar 

  • Werner S C 2009 The global martian volcanic evolutionary history; Icarus 201 44–68.

  • Williams D A, Greeley R, Hauber E, Gwinner K and Neukum G 2005 Erosion by flowing Martian lava: New insights for Hecates Tholus from Mars Express and MER data; J. Geophys. Res. Planets 110 E05006.

    Article  Google Scholar 

Download references

Acknowledgements

The study is funded by ISRO (Indian Space Research Organization), MOM-AO Project ISRO/SSPO/MOM-AO/2016-17. We are thankful to MRO CTX team for making their data available. This paper forms a part of the doctoral thesis of Mr Anil Chavan. Head, Department of Earth and Environmental Science, K.S.K.V. Kachchh University, is gratefully acknowledged for constant encouragement during the work. We are grateful to two anonymous reviewers and the Handling Editor for their constructive and insightful suggestions, improving our paper in its present form.

Author information

Authors and Affiliations

Authors

Contributions

Anil Chavan: Conceptualization, visualization, methodology, investigation, data collection, analysis, preparation of figures, writing original draft. Subhash Bhandari: Supervision, reviewing and editing.

Corresponding author

Correspondence to Subhash Bhandari.

Additional information

Communicated by Saibal Gupta

Corresponding editor: Saibal Gupta

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, A., Bhandari, S. Volcanic craters and cones in central Kachchh mainland, western India: Potential analogue for the Martian studies?. J Earth Syst Sci 131, 235 (2022). https://doi.org/10.1007/s12040-022-01972-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01972-4

Keywords

Navigation