Skip to main content
Log in

The effect of inertia, viscous damping, temperature and normal stress on chaotic behaviour of the rate and state friction model

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic behaviour of the two state variables rate and state friction (2sRSF) model. In general, a slight variation in any of inertia, viscous damping, temperature and effective normal stress reduces the chaotic behaviour of the sliding system. However, the present study has shown the appearance of chaos for the specific values of normal stress before it disappears again as the normal stress varies further. It is also observed that magnitude of system stiffness at which chaotic motion occurs, is less than the corresponding value of critical stiffness determined by using the linear stability analysis. These results explain the practical observation why chaotic nucleation of an earthquake is a rare phenomenon as reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(\tau \) :

Dimensional frictional stress (P\(_{\mathrm{a}}\))

\(\tau ^{*}\) :

Reference frictional stress (P\(_{\mathrm{a}}\))

\(\sigma _n\) :

Effective normal stress (P\(_{\mathrm{a}}\))

\(\mu _{*}\) :

Reference coefficient of friction

\(\theta _1\), \( \theta _2\) :

State variable related to asperity contact of the sliding interface

\(a,b_1\), \(b_2\) :

Constants related to rate and state friction

\(Q_a ,Q_{b_1}\), \( Q_{b_2}\) :

Activation energies corresponding to a, \(b_1\) and \(b_2\)

\(c_1\) :

Nondimensional term relates to frictional heating

\({c}_2\) :

Nondimensional term relates to heat conduction

c :

\((1-\beta _1 q_1 ){Q_a }/{RT^{*}}+(1-\beta _2 q_2 ){Q_a }/{RT^{*}}\), \(\rho ={L_1 }/{L_2}\)

K :

Stiffness of connecting spring (\(\hbox {P}_{\mathrm{a}}\,\,\hbox {m}^{-1}\))

k :

\({KL_1 }/{\sigma _n }a\), non-dimensional spring stiffness

r :

Ratio of inertial time to frictional characteristic time

r :

\(\sqrt{{m}v_{*}^2}/{\sigma _n aL_1}\)

\(\hat{\gamma }\) :

\({\gamma v_{*}}/{\sigma _n a}\)

\(\hat{\gamma }\) :

Nondimensional viscous damping coefficient

m :

Mass of the sliding block (kg)

\(\beta _1\) :

\({b_1 }/a\)

\(\beta _2\) :

\({b_2 }/a\)

\(q_1\) :

\({Q_{b_1 } }/{Q_a }\)

\(q_2\) :

\({Q_{b_2}}/{Q_a}\)

\(\psi \) :

\(\tau /{\sigma a}\)

\(\phi \) :

\(\hbox {ln}(v/{v_{*} })\)

\(d_c\) :

Critical slip distance (m)

\(v_0\) :

Pulling velocity (\(\hbox {ms}^{-1}\))

R :

Universal gas constant (\(\hbox {J}\ \hbox {K}^{-1}\hbox {mol}^{-1}\))

\(T_{*}\) :

Reference temperature (K)

T :

\(tv_{*}/{L_1}\)

\(T_s\) :

Temperature of the sliding interface (K)

\(\hat{{T}}_s\) :

\(T_{s}/T_{*}\)

References

  • Becker T W 2000 Deterministic chaos in two state-variable friction slider and effect of elastic interaction; Geocomplex. Phys. Earthq. 120 5.

    Article  Google Scholar 

  • Burridge R and Knopoff L 1967 Model and theoretical seismicity; Bull. Seismol. Soc. Am. 57(3) 341–371.

    Google Scholar 

  • Brace W F and Byerlee J D 1966 Stick-slip as a mechanism of earthquake; Science 153 990–992.

    Article  Google Scholar 

  • Brittany A, Erickson B A, Birnir B and Lavallée D 2011 Periodicity, chaos and localization in a Burridge–Knopoff model of an earthquake with rate-and-state friction;Geophys. J. Int. 187(1) 178–198.

    Article  Google Scholar 

  • Carlson J M and Langer J S 1989 Properties of earthquake generated by fault dynamics; Phys. Rev. Lett. 62(22) 2632–2635.

    Article  Google Scholar 

  • Carlson J M and Langer J S 1989 Mechanical model of an earthquake fault; Phys. Rev. A. 40(11) 6470–6484.

    Article  Google Scholar 

  • Chau K T 1995 Landslides modelled as bifurcations of creeping slopes with nonlinear friction law; Int. J. Solid Struct. 32(23) 3451–3464.

    Article  Google Scholar 

  • Cochard A, Bureau L and Baumberger T 2003 Stabilization of frictional sliding by normal load modulation; J. Appl. Mech. 70(2) 220–226, https://doi.org/10.1115/1.1546241.

    Article  Google Scholar 

  • Dieterich J D 1979 Modeling of rock friction: 1. Experimen results and constitutive equation; J. Geophys. Res. 84(B5) 2161–2168.

    Article  Google Scholar 

  • Dupont P E and Bapna D D 1994 Stability of the sliding frictional with varying normal force; J. Vib. Acoust. 116(2) 237–242.

    Article  Google Scholar 

  • Faillettaz J, Sornette D and Funk M 2010 Gravity-driven instabilities: Interplay between state- and velocity-dependent frictional sliding and stress corrosion damage cracking; J. Geophys. Res. 115 B03409, https://doi.org/10.1029/2009JB006512.

    Article  Google Scholar 

  • Gu Y and Wong T-F 1994 Nonlinear dynamics of the transition from stable sliding to cyclic stick-slip in rock in nonlinear dynamics and predictability of geophysical phenomena; In: Geophysical monograph (ed.) Newman W, AGU, Washington DC 8 15–35.

  • Gu J C, Rice J R, Ruina A L and Tse S T 1984 Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction; J. Mech. Phys. Solids 32 167–196.

    Article  Google Scholar 

  • Huang J and Turcotte D L 1990 Are earthquakes an example of deterministic chaos?; Geophys. Res. Lett. 17 223.

    Article  Google Scholar 

  • Helmstetter A, Sornette D, Grassol J-R, Andersen J V, Gluzman S and Pisarenko V 2004 Slider-block friction model for landslides: Application to Vaiont and La Clapi‘ere landslides; J. Geophys. Res. 109 B202409.

    Article  Google Scholar 

  • Kawamura H, Ueda Y, Kakui S, Morimoto S and Yamamoto T 2017 Statistical properties of the one-dimensional Burridge–Knopoff model of earthquakes obeying the rate- and state-dependent friction law; Phys. Rev. E 95 042122.

  • Linker M F and Dieterich J H 1992 Effect of variable normal stress on rock friction: Observation and constitutive equation; J. Geophys. Res. 97 4923–4940.

    Article  Google Scholar 

  • Lakshmanan M and Rajasekar S 2003 Nonlinear Dynamics (Integrability, Chaos and Patterns); Springer, Heidelberg.

    Google Scholar 

  • Liu Y 2007 Physical basis of aseismic deformation transients in subduction zones; PhD thesis, Harvard University.

  • Marone C 1998 Laboratory-derive friction laws and their application to seismic faulting; Ann. Rev. Earth Planet. Sci. 26 643–696.

    Article  Google Scholar 

  • Niu Z-B and Chen D M 1994 Period-doubling bifurcation and chaotic phenomena in a single degree of freedom elastic system with a two-state variable friction law; In: Nonlinear Dynamics and Predictability of Geophysical Phenomena (eds) Newman W I, Gabrielov A and Turcotte D L, AGU, Washington DC, https://doi.org/10.1029/GM083p0075.

  • Niu Z B and Chen D M 1995 Lyapunov exponent and dimension of the strange attractor of elastic frictional system; Acta Seimol. Sinica 8 575–584.

    Google Scholar 

  • Ranjith K and Rice J R 1999 Stability of quasi-static slip in a single degree of freedom elastic system with rate and state dependent friction; J. Mech. Phys. Solids 47 1207–1218.

    Article  Google Scholar 

  • Rice J R 1996 Slip complexity in dynamic model of earthquake faults; Proc. Nat. Acad. Sci. USA 93 3825–3829.

    Article  Google Scholar 

  • Rice J R and Ruina A L 1983 Stability of steady frictional slipping; J. Appl. Mech. 50 343–349.

    Article  Google Scholar 

  • Rice J R 1993 Spatio-temporal complexity of slip on a fault; J. Geophys. Res. 98 9885–9907.

    Article  Google Scholar 

  • Ruina A L 1983 Slip instability and state variable friction laws; J. Geophys. Res. 88 10359–10370.

    Article  Google Scholar 

  • Rice J R and Tse S T 1986 Dynamic motion of a single degree of freedom system following a rate and state dependent friction law; J. Geophys. Res. 91 521–530.

    Article  Google Scholar 

  • Segall P and Rice J R 2006 Does shear heating of pore fluid contribute to earthquake nucleation?; J. Geophys. Res. 111 B09316.

    Article  Google Scholar 

  • Shelly D R 2010 Periodic, chaotic, and doubled earthquake recurrence intervals on the deep san andreas fault; Science 238(11) 1385–1388.

    Article  Google Scholar 

  • Singh A K, Kanthola A and Singh T N 2012 Prediction of slope stability with an advanced friction model; Int. J. Rock. Mech. Min. Sci. 55 164–167.

    Google Scholar 

  • Singh A K and Singh T N 2013 Friction strength and steady relaxation using the rate and state dependent friction model; Pure Appl. Geophys. 170(3) 247–257.

    Article  Google Scholar 

  • Singh A K and Singh T N 2016 Stability of the rate, state, and temperature dependent friction model and its application; Geophys. J. Int. 205 636–647.

    Article  Google Scholar 

  • Sinha N and Singh A K 2016 Numerical study on chaotic behavior of slip and ageing laws of the rate and state friction; In: Dynamics, Vibration and Control, Narosa Publishing House, pp. 162–165.

  • Sinha N and Singh A K 2016 Linear and nonlinear stability analysis of rate state friction model with three state variables; Nonlin. Process Geophys. Discuss., https://doi.org/10.5194/npg-2016-11.

  • Strogatz S H 1994 Nonlinear dynamics and chaos: With application to physics, biology, chemistry and Engineering; Hachette, UK.

  • Tolstoi D M 1967 Significance of the normal degree of freedom and natural normal vibrations in contact friction; Wear 10 199–213.

    Article  Google Scholar 

  • Xuejun G 2013 Bifurcation behaviors of the two-state variable frictional law of a rock mass system; Int. J. Bifurcation Chaos. 23 11, https://doi.org/10.1142/S0218127413501848.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NRDMS-DST (order No. NRDMS//02/43/016(G)). The authors would like to thank Prof. Vinay A Juvekar, IIT Bombay for his useful discussion and suggestions for the improvement of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K Singh.

Additional information

Corresponding editor: N V Chalapathi Rao

Appendices

Appendix

A1. Linear stability of 2sRSTF model

In this section, we have carried out linear stability of the 2sRSTF model for predicting the critical stiffness at which sliding behaviour changes from stable to unstable. The system of differential equations in equation (8) is linearized about the equilibrium point or fixed point. This is obtained by equating the time derivatives in equation (8) equal to zero and solving the system of algebraic equations numerically. Moreover, the corresponding Jacobian matrix of equation (8) is obtained as:

figure a

The characteristic polynomial is obtained by expanding the above Jacobian matrix and this is given by \(s_0 \lambda ^{4}+s_1 \lambda ^{3}+s_2 \lambda ^{2}+s_3 \lambda +s_4 =0\), where the co-efficient of the polynomial are expressed as:

$$\begin{aligned} s_0= & {} 16, \\ s_1= & {} 8\left( c_2 +e^{\phi }-\beta _1 e^{\phi }+ke^{\phi }+\rho e^{\phi }-\rho \beta _2 e^{\phi }\right. \\&\left. -{cc_1 e^{\phi }\psi }/{\hat{T}_s^2 } \right) ,\\ s_2= & {} 4\left( c_2 e^{\phi }-\beta _1 c_2 e^{\phi }+c_2 ke^{\phi }+ke^{2\phi }+c_2 \rho e^{\phi }\right. \\&-\beta _2 c_2 \rho e^{\phi }+\rho e^{2\phi }-\rho \beta _1 e^{\phi }-\rho \beta _2 e^{2\phi }+\rho ke^{2\phi }\\&\left. +{cc_1 ke^{2\phi }}/{\hat{T}_s^2 }...-{cc_1 e^{2\phi }\psi }/{\hat{T}_s^2 }-{cc_1 \rho e^{2\phi }\psi }/{\hat{T}_s^2 }\right) ,\\ s_3= & {} 2\left( c_2 ke^{2\phi }+c_2 \rho e^{2\phi }-\beta _1 c_2 \rho e^{2\phi }-\beta _2 c_2 \rho e^{2\phi }\right. \\&+c_2 \rho ke^{2\phi } +\rho ke^{3\phi }+{cc_1 ke^{3\phi }}/{\hat{T}_s^2 }\\&\left. +{cc_1 k\rho e^{3\phi }}/{\hat{T}_s^2 }...-{cc_1 \rho e^{3\phi } \psi }/{\hat{T}_s^2 }\right) \\ s_4= & {} \left( {c_2 k\rho e^{3\phi }+{cc_1 k\rho e^{4\phi }}/{\hat{T}_s^2 }} \right) , \end{aligned}$$

The Routh–Hurwitz criterion is applied on above characteristic polynomial to obtain the governing algebraic equations for stability, namely, \(s_1 s_2 -s_0 s_3 =0\) and \(s_1 s_2 s_3 -s_0 s_3^2 -s_4 s_1^2=0\). These two coupled non-linear algebraic equations are, in turn, solved numerically for critical stiffness.

A2. Linear stability of 2sRSNF model

In this section, we have also carried out linear stability of the 2sRSNF model for predicting the critical stiffness of the system. We followed the same procedure for evaluating critical stiffness of the 2sRSTF friction model as is done in the case of 2sRSTF. The system of equilibrium point of equation (9) is obtained about the steady sliding as \(\phi _{ss} =e^{v_0 }\), \(\hat{\theta }_{2ss} =-\phi _{ss} \), \(\hat{\sigma }_{nss} =1\) and \(\psi _{ss} =\hat{\sigma }_{nss} [\hat{\mu }_{*} +({1-\beta _1 -\beta _2 } )\phi _{ss} ]\). This is now used to obtain the Jacobian matrix as following:

$$\begin{aligned} J_0 =\left[ {\begin{array}{llll} J_{11}&{} ,J_{12}&{} ,J_{13}&{} ,J_{14} \\ J_{21}&{} ,J_{22}&{} ,J_{23}&{} ,J_{24} \\ J_{31}&{} ,J_{32}&{} ,J_{33}&{} ,J_{34} \\ J_{41}&{} ,J_{42}&{} ,J_{43}&{} ,J_{44} \\ \end{array}} \right] _{(\phi _{{ ss}} ,\psi _{{ ss}} ,\hat{\theta }_{2ss} ,\hat{\sigma }_{nss})} \end{aligned}$$

where abbreviations are defined as:

$$\begin{aligned} J_{11}= & {} {-ke^{\phi _{ss} }}/{\hat{\sigma }_{nss} }-{ke^{\phi _{ss} }\psi _{ss} \tan \alpha }/{\hat{\sigma }_{nss}^2 }\\&+\rho \beta _2 e^{\phi _{ss} }+(\beta _1 -1)e^{\phi _{ss} }, \\ J_{12}= & {} {e^{\phi _{ss} }}/{\hat{\sigma }_{nss} },~~J_{13} =(\rho -1)\beta _2 e^{\phi _{ss} },\\ J_{14}= & {} {-e^{\phi _{ss} }\psi _{ss} }/{\hat{\sigma }_{nss}^2 },\\ J_{21}= & {} -ke^{\phi _{ss} },~~J_{22} =0,\\ J_{23}= & {} 0,~~J_{24} =0 \\ J_{31}= & {} -\rho e^{\phi _{ss} },~~ J_{32} =0,\\ J_{33}= & {} -\rho e^{\phi _{ss} },~~ J_{34} =0\\ J_{41}= & {} ke^{\phi _{ss} }\tan \alpha ,~~ J_{42} =0,\\ J_{43}= & {} 0,~~J_{44}=0. \end{aligned}$$

The characteristic equation is given \(|{J_0 -\lambda I} |=0\), where \(\lambda \) and I are eigen value and identity matrix, respectively. The characteristic equation is expanded for getting the characteristic polynomial as \(a_0 \lambda ^{4}+a_1 \lambda ^{3}+a_2 \lambda ^{2}+a_3 \lambda +a_4 =0\). The co-efficient of the polynomial is defined as the following

$$\begin{aligned} a_0= & {} 16,\\ a_1= & {} 8\left( e^{\phi }-\beta _1 e^{\phi }+{ke^{\phi }}/{\hat{\sigma }_n }+\rho e^{\phi }\right. \\&\left. -\beta _2 \rho e^{\phi }+{\psi e^{\phi }k\tan \alpha }/{\hat{\sigma }_n^2 } \right) ,\\ a_2= & {} 4\left( k{e^{2\phi }}/\hat{\sigma }_n +\rho e^{2\phi }-\beta _1 \rho e^{2\phi }\right. \\&\left. -\beta _2 \rho e^{2\phi }+{k\rho e^{2\phi }}/\hat{\sigma }_n +{k\psi e^{2\phi }\tan \alpha }/\hat{\sigma }_n^2\right. \\&\left. +{k\psi \rho e^{2\phi }\tan \alpha }/{\hat{\sigma }_n^2 } \right) ,\\ a_3= & {} 2\left( {k\rho e^{3\phi }}/\hat{\sigma }_n +{k\psi \rho e^{3\phi }\tan \alpha }/{\hat{\sigma }_n^2}\right) ,\\ a_4= & {} 0. \end{aligned}$$

Finally, the Routh–Hurwitz criterion is used to obtain critical stiffness \(k_{cr}\) at which sliding behaviour of the system changes from stable to unstable or vice versa. The Routh and Hurwitz criterion leads to the following system of coupled algebraic equations as \(a_1 a_2 -a_0 a_3 =0\) and \(a_1 a_2 a_3 -a_0 a_3^2 -a_4a_1^2 =0\). These equations are, in turn, solved numerically for critical stiffness \(k_{cr} \) of the sliding system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, N., Singh, A.K. & Singh, T.N. The effect of inertia, viscous damping, temperature and normal stress on chaotic behaviour of the rate and state friction model. J Earth Syst Sci 127, 45 (2018). https://doi.org/10.1007/s12040-018-0935-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0935-2

Keywords

Navigation