Skip to main content
Log in

Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor \((\sim \;10^{ - 4} )\) and hydraulic diffusivity \((\sim \;10^{ - 9} \;{\text{m}}^{2} \;{\text{s}}^{ - 1} )\). Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a, b :

Constants related to direct effect and evolution effect respectively

c :

\((1 - \beta q){{Q_{\text{a}} } \mathord{\left/ {\vphantom {{Q_{\text{a}} } {RT^{*} }}} \right. \kern-0pt} {RT_{*} }}\)

c 1 :

Nondimensional term relates to frictional heating

c 2 :

Nondimensional term relates to heat conduction

c h :

Nondimensional hydraulic diffusivity (m2 s−1)

c w :

Hydraulic diffusivity (m2 s−1)

h :

Thickness of damaged shear zone (mm)

h w :

Thickness of less damaged shear zone (mm)

K :

Stiffness of the connecting spring (Nm−2)

K T :

Thermal conductivity of rock material (W/m-K)

k :

\({{Kd_{\text{c}} } \mathord{\left/ {\vphantom {{Kd_{\text{c}} } {p_{\infty } }}} \right. \kern-0pt} {p_{\infty } }}a,\) nondimensional spring stiffness

k cr :

Nondimensional critical stiffness of the connecting spring

p s :

Pore fluid pressure at the sliding interface (MPa)

\(p_{\infty }\) :

Pore fluid pressure surrounding to the slip interface

Q a and Q b :

Activation energies corresponding to a and b

T s :

Temperature of the sliding interface

T * :

Temperature corresponding to reference sliding velocity

\(T_{\infty }\) :

Temperature surrounding to the slip interface (K)

T :

Dimensionless time

t c :

Creep time (h)

t f :

Time of failure (h)

v :

Sliding velocity or slip rate (mm s−1)

v 0 :

External pulling velocity (mm s-1)

α :

Spring inclination angle which coupled the normal stress with shear stress

β c :

Compressibility factor (Pa−1)

κ:

Permeability of the rock material (m2)

ν:

Pore fluid viscosity (Pa s)

Λ:

Coefficient of thermal pressurization (MPa °C−1)

ε :

Dilatancy factor

τ :

Frictional shear stress (MPa)

σ n :

Normal stress (MPa)

μ * :

Reference coefficient of friction

θ :

State variable related to the sliding interface

ψ g :

Constant gravitational pulling force (kN)

References

  • Alonso, E. E., Zervos, A., & Pinyol, N. M. (2016). Thermo-poro-mechanical analysis of landslides: From creepin behaviour to catastrophic failure. Geotechnique,66(3), 202–219.

    Article  Google Scholar 

  • Andrews, D. J. (2002). A fault constitutive relation accounting for thermal pressurization of pore fluid. Journal of Geophysical Research,107(B12), 2363. https://doi.org/10.1029/2002JB001942.

    Article  Google Scholar 

  • Blanpied, M. L., Lockner, D. A., & Byerlee, J. D. (1995). Frictional slip of granite at hydrothermal conditions. J. Geophys. Res., 100(B7), 13045–13064.

    Article  Google Scholar 

  • Blanpied, M. L., Tullis, T. E., & Weeks, J. D. (1998). Effect of slip, slip rate and shear heating on the friction of granite. Journal of Geophysical Research,103(B1), 489–511.

    Article  Google Scholar 

  • Chau, K. T. (1995). Landslides modelled as bifurcation of creeping slopes with nonlinear friction law. International Journal of Solids and Structures,32, 3451–3464.

    Article  Google Scholar 

  • Chester, F. M. (1994). Effects of temperature on friction: Constitutive equations and experiments with quartz gauge. Journal of Geophysical Research,99(B4), 7247–7261.

    Article  Google Scholar 

  • Chester, F. M., & Higgs, N. G. (1992). Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. Journal of Geophysical Research,97(B2), 1859–1870.

    Article  Google Scholar 

  • Colella, H. V., Dieterich, J. H., Dinger, K. R., & Rubin, A. M. (2012). Complex characteristics of slow slip events in subduction zones reproduced in multi-cycle simulations. Geophysical Research Letters,39, L20312. https://doi.org/10.1029/2012GL053276.

    Article  Google Scholar 

  • Dieterich, J. D. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research,84, 2161–2168.

    Article  Google Scholar 

  • Goren, L., & Aharonov, E. (2007). Long runout landslides: The role of frictional heating and hydraulic diffusivity. Geophysical Research Letters,34, L07301. https://doi.org/10.1029/2006GL028895.

    Article  Google Scholar 

  • Gu, J. C., Rice, J. R., Ruina, A. L., & Tse, S. T. (1984). Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. Journal of the Mechanics and Physics of Solids,32, 167–196.

    Article  Google Scholar 

  • Handwerger, A. L., Rempel, A. W., Skarbek, R. M., Roering, J. J., & Hilley, E. G. (2016). Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proceedings of the National Academy of Sciences of the USA,113(37), 10281–10286.

    Article  Google Scholar 

  • Helmstetter, A., Sornette, D., Grassol, J.-R., Andersen, J. V., Gluzman, S., & Pisarenko, V. (2004). Slider-block friction model for landslides: Application to Vaiont and La Clapière Landslides. Journal of Geophysical Research,109, B202409.

    Article  Google Scholar 

  • Kato, N. (2001). Effect of frictional heating on pre-seismic sliding: A numerical simulation using a rate-, state- and temperature-dependent friction law. Geophysical Journal International,147, 183–188.

    Article  Google Scholar 

  • Linker, M. F., & Dieterich, J. H. (1992). Effects of variable normal stress on rock friction: Observations and constitutive equations. Journal of Geophysical Research, 97(B4), 4923.

    Article  Google Scholar 

  • Lachenbruch, A. H. (1980). Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research,85, 6097–6122.

    Article  Google Scholar 

  • Lockner, D. A., & Byerlee, J. D. (1994). Dilatancy in hydraulically isolated faults and the suppression of instability. Geophysical Research Letters,21, 2353–2356.

    Article  Google Scholar 

  • Lorenzo, S. D., & Loddo, M. (2010). Effect of frictional heating and thermal advection on pre-seismic sliding: A numerical simulation using a rate-, state- and temperature-dependent friction law. Journal of Geodynamics,49, 1–13.

    Article  Google Scholar 

  • Marone, C. (1998). Laboratory derived friction laws and their application to seismic faulting. Annual Reviews in Earth Planetary Sciences,26, 643–696.

    Article  Google Scholar 

  • Mase, C. W., & Smith, L. (1985). Pore fluid pressures and frictional heating on a fault surface. Pure and Applied Geophysics,122, 583–607.

    Article  Google Scholar 

  • Mase, C. W., & Smith, L. (1987). Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. Journal of Geophysical Research,92, 6249–6272.

    Article  Google Scholar 

  • Mitchell, E. K., Fialko, Y., & Brown, K. M. (2015). Frictional properties of gabbro at conditions corresponding to slow slip events in subduction ones. Geochemistry, Geophysics, Geosystems,16, 4006–4020. https://doi.org/10.1002/2015GC006093.

    Article  Google Scholar 

  • Mitchell, E. K., Fialko, Y., & Brown, K. M. (2016). Velocity weakening behavior of Westerly granite at temperature up to 600 °C. Journal of Geophysical Research,121, 6932–6946. https://doi.org/10.1002/2016JB013081.

    Article  Google Scholar 

  • Mitsui, Y., & Cocco, M. (2010). The role of porosity evolution in frictional instabilities: A parametric study using a spring-slider dynamic system. Geophysical Research Letters,37, L23305. https://doi.org/10.1029/2010GL045672.

    Article  Google Scholar 

  • Platt, J. D., Brantut, N., & Rice, J. R. (2015). Strain localization driven by thermal decomposition during seismic shear. Journal of Geophysical Research,120, 4405–4433. https://doi.org/10.1002/2014JB011493.

    Article  Google Scholar 

  • Platt, J. D., Rudnicki, J. W., & Rice, J. R. (2014). Stability and localization of rapid shear in fluid-saturated fault gouge. 2. Localized zone width and strength evolution. Journal of Geophysical Research,119, 4334–4359. https://doi.org/10.1002/2013JB010711.

    Article  Google Scholar 

  • Ranjith, K., & Rice, J. R. (1999). Stability of quasi-static slip in a single degree of freedom elastic system with rate and state dependent friction. Journal of the Mechanics and Physics of Solids,47, 1207–1218.

    Article  Google Scholar 

  • Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research,111, B05311. https://doi.org/10.1029/2005JB004006.

    Article  Google Scholar 

  • Rice, J. R., Rudnicki, J. W., & Platt, J. D. (2014). Stability and localization of rapid shear in fluid-saturated fault gouge. 1. Linearized stability analysis. Journal of Geophysical Research,119, 4311–4333. https://doi.org/10.1002/2013JB01071.

    Article  Google Scholar 

  • Ruina, A. L. (1983). Slip instability and state variable friction law. Journal of Geophysical Research,88(B12), 10359–10370.

    Article  Google Scholar 

  • Schmitt, S. V., Segall, P., & Matsuzawa, T. (2011). Shear heating-induced thermal pressurization during earthquake nucleation. Journal of Geophysical Research,116, B06308. https://doi.org/10.1029/2010JB008035.

    Article  Google Scholar 

  • Segall, P., & Bradley, A. M. (2012). The role of thermal pressurization and dilatancy in controlling the rate of fault slip. Journal of Applied Mechanics,79(3), 031013. https://doi.org/10.1115/1.4005896.

    Article  Google Scholar 

  • Segall, P., & Rice, J. R. (1995). Dilatancy, compaction and slip instability of a fluid-infiltrated fault. Journal of Geophysical Research,100(B11), 22155–22171.

    Article  Google Scholar 

  • Segall, P., & Rice, J. R. (2006). Does shear heating of pore fluid contribute to earthquake nucleation? Journal of Geophysical Research,111, B09316. https://doi.org/10.1029/2005JB004129.

    Article  Google Scholar 

  • Singh, A. K. (2017). Stability analysis and application of the rate, state, temperature and pore pressure friction(RSTPF) model for earthquake and landslide (abstract).In Vainchtein, A., Grabovsky, Y., Recho, P. & Zanzotto, G., Nonconvexity (Eds.) Nonlocality and incompatibility: From materials to biology. https://pdfs.semanticscholar.org/9384/10b2fbc23c75e50e61f3ba00e0d3a6296529.pdf.

  • Singh, A. K., Kanthola, A., & Singh, T. N. (2012). Prediction of slope stability with an advanced friction model. International Journal of Rock Mechanics and Mining Sciences,55, 164–167.

    Article  Google Scholar 

  • Singh, A. K., & Singh, T. N. (2013). Friction strength and steady relaxation using the rate and state dependent friction model. Pure and Applied Geophysics,170, 247–257.

    Article  Google Scholar 

  • Singh, A. K., & Singh, T. N. (2016). Stability of the rate, state and temperature friction model and its applications. Geophysical Journal International,205, 636–647.

    Article  Google Scholar 

  • Steksky, R. M. (1978). Rock friction-effect of confining pressure, temperature, and pore pressure. Pure and Applied Geophysics,116, 690–704.

    Article  Google Scholar 

  • Tse, S. T., & Rice, J. R. (1986). Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research,91, 9452–9472.

    Article  Google Scholar 

  • Veveakis, E., Vardoulakis, I., & Toro, G. Di. (2007). Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy. Journal of Geophysical Research,112, F03026. https://doi.org/10.1029/2006JF000702.

    Article  Google Scholar 

  • Wibberley, C. A. J. (2002). Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth Planets Space,54, 1153–1171.

    Article  Google Scholar 

  • Wibberley, C. A. J., & Shimamoto, T. (2003). Internal structure and permeability of major strike-slip fault zones: The Median Tectonic Line in Mid Prefecture, southwest Japan. Journal of Structural Geology,25, 59–78.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NRDMS-DST, New Delhi through the Project No. [NRDMS//02/43/016(G)]. The authors are grateful to Prof. Jim Rice for his fruitful discussions in the conference on “Nonconvexity, Nonlocality, and Incompatibility: From Materials to Biology” at University of Pittsburgh, USA, during May 5–7, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Singh.

Appendix

Appendix

In this section, we discuss the linear stability analysis of the RSTPF model in Eq. (7). We carry out linear stability about the equilibrium point of Eq. (7). The equilibrium point \(\left( {\phi_{\text{ss}} , \, \hat{p}_{\text{ss}} , { }\psi_{\text{ss}} ,\hat{T}_{\text{ss}} } \right)\) is corresponding to steady sliding given by the following:

$$\phi_{\text{ss}} = e^{{\upsilon_{0} }} , \, \hat{p}_{\text{ss}} = \hat{p}_{\infty } , \, \hat{T}_{\text{ss}} = \frac{{c_{1} }}{{c_{2} }}e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} + \hat{T}_{\infty } ,{\text{ and }}\psi_{\text{ss}} = \left( {\hat{\sigma }_{n} - \hat{p}_{\text{ss}} } \right)\left[ {\hat{\mu }_{ * } + c(\hat{T}_{\text{ss}}^{ - 1} - 1) - (\beta - 1)\phi_{\text{ss}} } \right],$$

and Jacobian matrix about the equilibrium point is expressed as follows:

$$J_{0} = \left[ \begin{aligned} J_{11} , \, J_{12} , \, J_{13} , \, J_{14} \hfill \\ J_{21} , \, J_{22} , { }J_{23} , { }J_{24} \, \hfill \\ J_{31} , \, J_{32} , { }J_{33} , { }J_{34} \hfill \\ J_{41} , \, J_{42} , { }J_{43} , { }J_{44} \hfill \\ \end{aligned} \right]_{{ (\phi_{\text{ss}} ,\psi_{\text{ss}} ,\hat{T}_{\text{ss}} ,\hat{p}_{\text{ss}} )}} { ,}$$

where the terms are defined as follows:

$$\begin{aligned} J_{11} & = - ke^{{\phi_{\text{ss}} }} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} + \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} \left[ {\varLambda^{\prime}c_{1} e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} - \hat{\varepsilon }e^{{\phi_{\text{ss}} }} \beta^{ - 1} (\beta - 1)} \right] + (b - 1)e^{{\phi_{\text{ss}} }} + cc_{1} e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} \hat{T}_{\text{ss}}^{ - 2} , \\ J_{12} & = \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} \left[ {\varLambda^{\prime}c_{1} e^{{\phi_{\text{ss}} }} - \hat{\varepsilon }e^{{\phi_{\text{ss}} }} \beta^{ - 1} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} } \right] + (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} e^{{\phi_{\text{ss}} }} + cc_{1} e^{{\phi_{\text{ss}} }} \hat{T}_{\text{ss}}^{ - 2} , \\ J_{12} & = \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} \left[ {\varLambda^{\prime}c_{1} e^{{\phi_{\text{ss}} }} - \hat{\varepsilon }e^{{\phi_{\text{ss}} }} \beta^{ - 1} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} } \right] + (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} e^{{\phi_{\text{ss}} }} + cc_{1} e^{{\phi_{\text{ss}} }} \hat{T}_{\text{ss}}^{ - 2} , \\ J_{12} & = \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} \left[ {\varLambda^{\prime}c_{1} e^{{\phi_{\text{ss}} }} - \hat{\varepsilon }e^{{\phi_{\text{ss}} }} \beta^{ - 1} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} } \right] + (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} e^{{\phi_{\text{ss}} }} + cc_{1} e^{{\phi_{\text{ss}} }} \hat{T}_{\text{ss}}^{ - 2} , \\ J_{13} & = - \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} (\varLambda^{\prime}c_{2} + \hat{\varepsilon }ce^{{\phi_{\text{ss}} }} \beta^{ - 1} \hat{T}_{\text{ss}}^{ - 2} ) + c\hat{T}_{\text{ss}}^{ - 2} e^{{\phi_{ss} }} - cc_{2} \hat{T}_{\text{ss}}^{ - 2} , \\ J_{14} & = \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} \left[ { - \hat{\varepsilon }e^{{\phi_{\text{ss}} }} \beta^{ - 1} \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} - c_{h} } \right] + e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} ,J_{31} = c_{1} e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} ,J_{32} = c_{1} e^{{\phi_{\text{ss}} }} , \\ J_{21} & = - ke^{{\phi_{\text{ss}} }} ,J_{22} = 0,J_{23} = 0,J_{24} = 0,J_{33} = - c_{2} ,J_{34} = 0,J_{41} = \left[ {\varLambda^{\prime}c_{1} e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} - \hat{\varepsilon }e^{{\phi_{\text{ss}} }} \beta^{ - 1} (\beta - 1)} \right], \\ J_{42} & = \varLambda^{\prime}c_{1} e^{{\phi_{\text{ss}} }} - \hat{\varepsilon }e^{{\phi_{\text{ss}} }} \beta^{ - 1} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} ,J_{43} = - \varLambda^{\prime}c_{2} - \hat{\varepsilon }ce^{{\phi_{\text{ss}} }} \beta^{ - 1} \hat{T}_{\text{ss}}^{ - 2} ,J_{43} = - \hat{\varepsilon }\psi_{\text{ss}} e^{{\phi_{\text{ss}} }} \beta^{ - 1} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} - c_{\text{h}} . \\ \end{aligned}$$

The characteristic polynomial equation is obtained by expanding the Jacobian matrix \(J_{0}\) for eigenvalues \(\lambda_{s}\) as \(a_{0} \lambda^{4} + a_{1} \lambda^{3} + a_{2} \lambda^{2} + a_{3} \lambda + a_{4} = 0\), where coefficients are defined as follows:

$$a_{0} = 16,$$
$$a_{1} = 8\left[ {c_{2} + c_{\text{h}} + e^{{\phi_{\text{ss}} }} - \beta e^{{\phi_{\text{ss}} }} + e^{{\phi_{\text{ss}} }} k(\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} - cc_{1} e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} \hat{T}_{\text{ss}}^{ - 2} + \hat{\varepsilon }e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} - c_{1} e^{{\phi_{\text{ss}} }} \psi_{\text{ss}}^{2} \varLambda^{\prime}(\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} } \right],$$
$$a_{2} = 4\left[ \begin{aligned} & c_{2} c_{\text{h}} + c_{2} e^{{\phi_{\text{ss}} }} - \beta c_{2} e^{{\phi_{\text{ss}} }} + c_{\text{h}} e^{{\phi_{\text{ss}} }} - \beta c_{\text{h}} e^{{\phi_{\text{ss}} }} + cc_{1} ke^{{2\phi_{\text{ss}} }} \hat{T}_{\text{ss}}^{ - 2} + c_{2} e^{{\phi_{\text{ss}} }} k(\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} + c_{\text{h}} e^{{\phi_{\text{ss}} }} k(\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} .. \\ & + \;e^{{2\phi_{\text{ss}} }} k(\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} - cc_{1} c_{\text{h}} e^{{\phi_{\text{ss}} }} \psi_{\text{ss}} \hat{T}_{\text{ss}}^{ - 2} - cc_{1} e^{{2\phi_{\text{ss}} }} \psi_{\text{ss}} \hat{T}_{\text{ss}}^{ - 2} + c_{2} e^{{\phi_{\text{ss}} }} \hat{\varepsilon }\psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} + c_{1} e^{{2\phi_{\text{ss}} }} k\varLambda^{\prime}\psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} .. \\ & - \;c_{1} e^{{2\phi_{\text{ss}} }} \varLambda^{\prime}\psi_{\text{ss}}^{2} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} \\ \end{aligned} \right],$$
$$a_{3} = 2\left[ \begin{aligned} & c_{2} c_{\text{h}} e^{{\phi_{\text{ss}} }} - \beta c_{2} c_{\text{h}} e^{{\phi_{\text{ss}} }} + cc_{1} c_{\text{h}} ke^{{2\phi_{\text{ss}} }} \hat{T}_{\text{ss}}^{ - 2} + cc_{1} e^{{3\phi_{\text{ss}} }} k\hat{T}_{\text{ss}}^{ - 2} + c_{2} c_{\text{h}} e^{{\phi_{\text{ss}} }} k(\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} + c_{2} e^{{2\phi_{\text{ss}} }} k(\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} .. \\ & + \;c_{\text{h}} e^{{2\phi_{\text{ss}} }} k(\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} - cc_{1} c_{\text{h}} e^{2\phi } \psi T^{ - 2} + c_{1} e^{3\phi } k\varLambda^{\prime}\psi_{\text{ss}} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 2} \\ \end{aligned} \right],$$
$$a_{4} = \left[ {cc_{1} c_{\text{h}} ke^{{3\phi_{\text{ss}} }} \hat{T}_{\text{ss}}^{ - 2} + c_{2} c_{\text{h}} ke^{{2\phi_{\text{ss}} }} (\hat{\sigma }_{\text{n}} - \hat{p}_{\text{ss}} )^{ - 1} } \right].$$

Finally, using the Routh–Hurwitz criterion for dynamic stability, the above coefficients as \(a_{1} a_{2} - a_{0} a_{3} \;{\text{and}}\;a_{1} a_{2} a_{3} - a_{0} a_{3}^{2} - a_{4} a_{1}^{2} = 0\). These nonlinear equations are, in turned, solved numerically for critical stiffness \(k_{\text{cr}}\) of the sliding system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, N., Singh, A.K. & Singh, T.N. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface. Pure Appl. Geophys. 176, 4969–4982 (2019). https://doi.org/10.1007/s00024-018-1897-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1897-7

Keywords

Navigation