Skip to main content
Log in

Synthesis of Quinolines from 2-amino aryl ketones: Probing the Lewis Acid Sites of Metal-Organic Framework Catalyst

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Recent research underscores the significance of metal-organic frameworks as catalysts, owing to their structural adaptability, substantial surface areas, adjustable pore dimensions, and customizable catalytic sites. Using Friedländer synthesis, we evaluated the catalytic potential of three synthesized metal-organic framework materials, MIL-53(Al), MIL-101(Cr), and MOF-5(Zn), in quinoline derivative synthesis. MIL-53(Al) outperformed MIL-101(Cr) and MOF-5(Zn), highlighting the vital role of Lewis acidic sites (Al3+) in quinoline production. Potentiometric titration analyses revealed MIL-53(Al)'s superior Lewis acid strength. Reaction optimization involved varying temperatures, catalyst loading, reaction duration, and solvents. MIL-53(Al) exhibited four-cycle recyclability. Mechanistic insights underscored Lewis acid strength and the significance of sites. The Al-based catalyst proficiently facilitated Friedlander synthesis, yielding enhanced conversion and considerable physiologically active quinoline yields. The findings offer insights into diverse catalytic strategies and demonstrate the adaptability of metal-organic framework materials in varied chemical reactions.

Graphical Abstract

The Al-based Lewis acid MOF catalyst MIL-53(Al) efficiently facilitated the Friedlander synthesis, resulting in improved conversion and significant yields of physiologically active quinolines. These findings provide insights into versatile catalytic strategies and showcase the adaptability of MOFs in diverse chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1

Similar content being viewed by others

References

  1. Pe E, Samadi A, Carreiras C and Soriano E 2009 Recent Advances in the Friedlander Chem. Rev. 109 2652

    Article  Google Scholar 

  2. Akbari J, Heydari A, Kalhor H R and Kohair S A 2010 Sulfonic acid functionalized ionic liquid in combinatorial approach, a recyclable and water tolerant-acidic catalyst for one-pot friedlander quinoline synthesis J. Comb. Chem. 12 137

    Article  CAS  PubMed  Google Scholar 

  3. Garella D et al., 2009 Fast, solvent-free, microwave-promoted friedländer annulation with a reusable solid catalyst Synth. Commun. 40 120

    Article  Google Scholar 

  4. Martín-Aranda R M and Čejka J 2010 Recent advances in catalysis over mesoporous molecular sieves Top. Catal. 53 141

    Article  Google Scholar 

  5. Bose D S and Kumar R K 2006 An efficient, high yielding protocol for the synthesis of functionalized quinolines via the tandem addition/annulation reaction of o-aminoaryl ketones with α-methylene ketones Tetrahedron Lett. 47 813

    Article  CAS  Google Scholar 

  6. Wu J, Zhang L and Diao T N 2005 An expeditious approach to quinolines via Friedländer synthesis catalyzed by FeCl3 or Mg(ClO4)2 Synlett 17 2653

    Article  Google Scholar 

  7. Yadav J S, Reddy B V S and Premalatha K 2004 Bi(OTf)3-catalyzed Friedländer hetero-annulation: A rapid synthesis of 2,3,4-trisubstituted quinolines Synlett 7 963

    Article  Google Scholar 

  8. De S K and Gibbs R A 2005 A mild and efficient one-step synthesis of quinolines Tetrahedron Lett. 46 1647

    Article  CAS  Google Scholar 

  9. Arumugam P, Karthikeyan G, Atchudan R, Muralidharan D and Perumal P T 2005 A simple, efficient and solvent-free protocol for the friedländer synthesis of quinolines by using SnCl2·2H2O Chem. Lett. 34 314

    Article  CAS  Google Scholar 

  10. Kumar D et al., 2005 In(OTf)3-catalyzed synthesis of 2-styryl quinolines: Scope and limitations of metal Lewis acids for tandem Friedländer annulation-Knoevenagel condensation RSC Adv. 5 2920

    Article  ADS  Google Scholar 

  11. Wang Z 2010 Comprehensive OrganicName Reactions and Reagents (John Wiley: Hoboken, NJ, USA)

    Book  Google Scholar 

  12. Meenu P C, Datta S P, Dinda S, Singh S A, Chakraborty C and Roy S 2021 A compendium on metal organic framework materials and their derivatives as electrocatalyst for methanol oxidation reaction Mol. Catal. 510 111710

    Article  CAS  Google Scholar 

  13. Lawrence A S, Sivakumar B and Dhakshinamoorthy A 2022 Detecting Lewis acid sites in metal-organic frameworks by density functional theory Mol. Catal. 517 112042

    Article  CAS  Google Scholar 

  14. Dhakshinamoorthy A and Garcia H 2012 Catalysis by metal nanoparticles embedded on metal–organic frameworks Chem. Soc. Rev. 41 5262

    Article  CAS  PubMed  Google Scholar 

  15. Dalapati R et al., 2016 A highly stable dimethyl-functionalized Ce(IV)-based UiO-66 metal-organic framework material for gas sorption and redox catalysis CrystEngComm 18 7855

    Article  CAS  Google Scholar 

  16. Krishna B, Payra S and Roy S 2022 Synthesis of dihydropyrimidinones via multicomponent reaction route over acid functionalized Metal-Organic framework catalysts J. Colloid Interface Sci. 607 729

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Hall J N and Bollini P 2020 Metal-Organic Framework MIL-100 Catalyzed cetalization of Benzaldehyde with Methanol: Lewis or Brønsted Acid Catalysis ACS Catal. 10 3750

    Article  CAS  Google Scholar 

  18. Anbu N and Dhakshinamoorthy A 2018 Regioselective ring opening of styrene oxide by carbon nucleophiles catalyzed by metal-organic frameworks under solvent-free conditions J. Ind. Eng. Chem. 58 9

    Article  CAS  Google Scholar 

  19. Payra S and Roy S 2021 From Trash to Treasure: Probing Cycloaddition and Photocatalytic Reduction of CO2 over Cerium-Based Metal-Organic Frameworks J. Phys. Chem. C 125 8497

    Article  CAS  Google Scholar 

  20. Zhang X N, Liu L, Han Z B, Gao M L and Yuan D Q 2015 A dual-functional Cd(II)-organic-framework demonstrating selective sensing of Zn2+ and Fe3+ ions exclusively and size-selective catalysis towards cyanosilylation RSC Adv. 5 10119

    Article  ADS  Google Scholar 

  21. Dhakshinamoorthy A, Alvaro M and Garcia H 2011 Metal-organic frameworks as heterogeneous catalysts for oxidation reactions Catal. Sci. Technol. 1 856

    Article  CAS  Google Scholar 

  22. Dhakshinamoorthy A, Asiri A M and Garcia H 2016 Metal-Organic Frameworks as Catalysts for Oxidation Reactions Chem. - A Eur. J. 22 8012

    Article  CAS  Google Scholar 

  23. Payra S et al., 2022 Photo- and Electrocatalytic Reduction of CO2 over Metal-Organic Frameworks and Their Derived Oxides: A Correlation of the Reaction Mechanism with the Electronic Structure Inorg. Chem. 61 2476

    Article  CAS  PubMed  Google Scholar 

  24. Payra S, Devaraj N, Tarafder K and Roy S 2022 Unprecedented Electroreduction of CO2 over Metal Organic Framework-Derived Intermetallic Nano-Alloy Cu0.85Ni0.15/C ACS Appl. Energy Mater. 5 4945

    Article  CAS  Google Scholar 

  25. Li H, Yang T and Fang Z 2018 Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures Appl. Catal. B Environ. 227 79

    Article  CAS  Google Scholar 

  26. Payra S, Kanungo S and Roy S 2022 Controlling C-C coupling in electrocatalytic reduction of CO2 over Cu1−xZnx/C Nanoscale 14 13352

    Article  CAS  PubMed  Google Scholar 

  27. Dhakshinamoorthy A, Asiri A M and Garcia H 2015 Metal-organic frameworks catalyzed C-C and C-heteroatom coupling reactions Chem. Soc. Rev. 44 1922

    Article  CAS  PubMed  Google Scholar 

  28. Park J, Li J-R, Chen Y-P, Yu J, Yakovenko A A, Wang Z U, et al. 2012 A versatile metal-organic framework for carbon dioxide capture and ooperative catalysis Chem. Commun. 48 9995

    Article  CAS  Google Scholar 

  29. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, et al. 2004 A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration Chem. Eur. J. 10 1373

    Article  CAS  PubMed  Google Scholar 

  30. Lebedev OI, Millange F, Serre C, Van Tendeloo G and Férey G 2005 First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101 Chem. Mater. 17 6525

    Article  CAS  Google Scholar 

  31. Qing L, Liqi N, Shudong Z, Mengna T, Yao S and Yi H 2013 Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants Sci. Rep. 3 2916

    Article  Google Scholar 

  32. Wu C-M, Rathi M, Ahrenkiel S P, Koodali R T and Wang Z 2013 Facile synthesis of MOF-5 confined in SBA-15 hybrid material with enhanced hydro stability Chem. Commun. 49 1223

    Article  CAS  Google Scholar 

  33. Salmi L D, Heikkilä M J, Puukilainen E, Sajavaara T, Grosso D and Ritala M 2013 Studies on atomiclayer deposition of MOF-5 thinfilms Micropor. Mesopor. Mater. 182 147

    Article  CAS  Google Scholar 

  34. Li B et al. 2015 Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions J. Am. Chem. Soc. 137 4243

    Article  CAS  PubMed  Google Scholar 

  35. López-Sanz J, Pérez-Mayoral E, Procházková D, Martín-Aranda R M and López-Peinado A J 2010 Zeolites promoting quinoline synthesis via Friedländer reaction Top. Catal. 53 1430

    Article  Google Scholar 

  36. Arcadi A, Chiarini M, Di Giuseppe S and Marinelli F 2015 A new green approach to the Friedländer synthesis of quinolines Synlett 2 203

    Google Scholar 

  37. Pérez-Mayoral E and Čejka J 2011 [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction ChemCatChem 3 157

    Article  Google Scholar 

  38. Villabrille P, Vázquez P, Blanco M and Cáceres C 2002 Equilibrium adsorption of molybdosilicic acid solutions on carbon and silica: Basic studies for the preparation of ecofriendly acidic catalysts J. Colloid Interface Sci. 251 151

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Pizzio L R, Vázquez P G, Cáceres C V and Blanco M N 2003 Supported Keggin type heteropolycompounds for ecofriendly reactions Appl. Catal. A Gen. 256 125

    Article  CAS  Google Scholar 

  40. Roy S 2020 Photocatalytic Materials for Reduction of Nitroarenes and Nitrates J. Phys. Chem. C 52 28345

    Article  Google Scholar 

Download references

Acknowledgment

B. Krishna would like to thank Adama India Pvt. Ltd. for financial support. Both the authors acknowledge BITS Pilani Hyderabad Campus.

Funding

Birla Institute of Technology and Science, Pilani.

Author information

Authors and Affiliations

Authors

Contributions

Bandarupalli Krishna: Investigation, Data curation, Validation, Writing-original draft. Sounak Roy: Conceptualization, Writing, Review & editing.

Corresponding author

Correspondence to Sounak Roy.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4588 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, B., Roy, S. Synthesis of Quinolines from 2-amino aryl ketones: Probing the Lewis Acid Sites of Metal-Organic Framework Catalyst. J Chem Sci 136, 17 (2024). https://doi.org/10.1007/s12039-024-02257-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02257-7

Keywords

Navigation