Skip to main content
Log in

Analytical two-center one-electron overlap and exchange integrals for \(^{1}\Sigma\) states: Lah number guided Coulomb Green function of H-like s-orbitals

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Theoretical studies of two-center one-electron (2c-1e) small microcluster are associated with hurdles in Schr\(\ddot{o}\)dinger equation (SE) born out of divergence of Coulomb interactions and nuclear separation (R). The SE deals with morphologically altered H-like AOs, Slater type orbitals (STO), Gaussian type orbitals (GTO), B-spline, Sturmian function and etc in both VBT and MOT calculations. Few elegant computational and analytical methods are available for STO, GTO and other square integrable trial wavefunction under Born-Oppenheimer approximation. Even so, analytical treatment for H-like AOs has become very necessary. Utilizing Sheffer identity in associated Laguerre polynomial/Whittaker-M H-like AOs and adopting elliptic coordinates provide exact, analytical and simple 2c-1e Coulomb exchange interactions (Ks) and overlap integrals as functions of R with different scaling factors associated with electrons. The energetics of diatomic molecule is evident to be the function of R with extrema as Lah number moderated \(L_n^{-1}\) for nuclear coordinates.

Graphical abstract

Analytical and simple 2c-1e Coulomb exchange interactions (Ks) and overlap integrals (Ss) as functions of R are presented utilizing Sheffer identity in associated Laguerre polynomial/ Whittaker-M H-like AOs and adopting elliptic coordinates mediated through Lah number. The energetics of the diatomic molecule is evident to be the function of R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Guseinov I I 1970 Analytical evaluation of two-centre coulomb, hybrid and one-electron integrals for slater-type orbitals J. Phys. B 3 1399

    Article  ADS  Google Scholar 

  2. Guseinov I I and Sadichov F S 1977 Analytical evaluation of electric multipole moment integrals for slater-type orbitals J. Phys. B 10 L261

    Article  CAS  ADS  Google Scholar 

  3. Michał L and Robert M 2014 Reexamination of the calculation of two-center, two-electron integrals over slater-type orbitals. i. coulomb and hybrid integrals Phys. Rev. E 90 063318

  4. Michał L and Robert M 2014 Reexamination of the calculation of two-center, two-electron integrals over slater-type orbitals ii neumann expansion of the exchange integrals Phys. Rev. E 90 063319

    Article  Google Scholar 

  5. Jones H W 1981 Computer-generated formulas for two-center coulomb integrals over slater-type orbitals Int. J. Quantum Chem. 20 1217

    Article  CAS  Google Scholar 

  6. Özmen A, Karakas A, Atav Ü and Yakar Y 2003 Computation of two-center coulomb integrals over slater-type orbitals using elliptical coordinates Int. J. Quantum Chem. 91 13

    Article  Google Scholar 

  7. James H M and Coolidge A S 1993 The ground state of the hydrogen molecule J. Chem. Phys. 1 825

    Article  ADS  Google Scholar 

  8. Kołos W and Wolniewicz L 1963 Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule Rev. Mod. Phys. 35 473

    Article  ADS  Google Scholar 

  9. Callen E 1955 Configuration interaction applied to the hydrogen molecule J. Chem. Phys. 23 360

    Article  CAS  ADS  Google Scholar 

  10. Coulson C A 1942 Two-centre integrals occurring in the theory of molecular structure Math. Proc. Camb. Philos. Soc. 38 210-223

    Article  MathSciNet  CAS  ADS  Google Scholar 

  11. Hulburt H M and Hirschfelder J O 1941 Potential energy functions for diatomic molecules J. Chem. Phys. 9 61

    Article  ADS  Google Scholar 

  12. Sahni R C and LaBudde C D 1960 Study of molecular integrals. i. two-center exchange integrals J. Chem. Phys. 33 1015

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Tennyson J, Lodi L, McKemmish L K and Yurchenko S N 2016 The ab initio calculation of spectra of open shell diatomic molecules J. Phys. B 49 102001

    Article  ADS  Google Scholar 

  14. Freed K F 1966 Theory of the hyperfine structure of molecules: Application to 3\(\pi\) states of diatomic molecules intermediate between hund’s cases (a) and (b) J. Chem. Phys. 45 4214

    Article  CAS  ADS  Google Scholar 

  15. Antonsen F 1999 Sturmian basis functions for the harmonic oscillator Phys. Rev. A 60 812

    Article  CAS  ADS  Google Scholar 

  16. Avery J S and Avery J E 2012 Coulomb sturmians as a basis for molecular calculations Mol. Phys. 110 1593

    Article  CAS  ADS  Google Scholar 

  17. Gill P M W1994 Molecular integrals over gaussian basis functions In Advances Quantum Chemistry vol. 25 (Academic Press) pp. 141–205

  18. Womack J 2015 Evaluating Many-Electron Molecular Integrals for Quantum Chemistry. PhD thesis

  19. Sharma S, Aggarwal P, Kaur H and Hazra R K 2019 Analytical treatment to helium isoelectronic ions via green function expansion of coulomb interactions: perturbation calculations of ground-state energies with hydrogenic orbitals J. Indian Chem. Soc. 96 775

    Google Scholar 

  20. Sharma S, Aggarwal P and Hazra R K 2020 Full–scale analytical perturbation calculation of he–isoelectronic series with hydrogenic bound states via green’s function expansion (monopole) of coulomb interactions Mol. Phys. 118 e1770881

    Article  ADS  Google Scholar 

  21. Sharma S, Kapil B, Aggarwal P and Hazra R K 2022 Heavy-hole bilayer trions of transition metal dichalcogenides by analytical treatment to model he-isoelectronic ions upto dipole factor of green’s function expansion of coulomb interaction Phys. Open 11 100107

    Article  CAS  Google Scholar 

  22. Kapil B, Sharma S, Aggarwal P and Hazra R K 2022 Binding energies and current density of heavy-hole trions of monolayer transition metal dichalcogenides: analytical perturbation treatment of coulomb interaction with 2d h-like basis set Eur. Phys. J. Plus 137 809

    Article  CAS  Google Scholar 

  23. Kapil B, Sharma S, Aggarwal P and Hazra R K 2023 Analytical multiconfiguration treatment to one-center many-electron He-isoelectronic ions and Period-II elements with H-like bound-states (Preprint) Europe PMC https://doi.org/10.21203/rs.3.rs-2529477/v1

  24. Kapil B, Sharma S, Aggarwal P and Hazra R K 2022 Lah number mediated analytical two-center two-electron integrals of Coulomb Green function of H-like orbitals for \(^{1}\sum\) states (under review)

  25. Kato T 1950 On the adiabatic theorem of quantum mechanics J. Phys. Soc. Jpn. 5 435

    Article  ADS  Google Scholar 

  26. Kato T 1957 On the eigenfunctions of many-particle systems in quantum mechanics Comm. Pure Appl. Math. 10 151

    Article  MathSciNet  Google Scholar 

  27. Bingel W A 1963 The behaviour of the first-order density matrix at the coulomb singularities of the schrödinger equation Zeitsch 18 1249

    MathSciNet  ADS  Google Scholar 

  28. Bingel W A 1967 A physical interpretation of the cusp conditions for molecular wave functions Theor. Chim. Acta 8 54

    Article  CAS  Google Scholar 

  29. Myers C R, Umrigar C J, Sethna J P and Morgan J D 1991 Fock’s expansion, kato’s cusp conditions, and the exponential ansatz Phys. Rev. A 44 5537

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Rassolov V A and Chipman D M 1996 Behavior of electronic wave functions near cusp J. Chem. Phys. 104 9908

    Article  CAS  ADS  Google Scholar 

  31. Rico J F, López R, Ema I and Ramírez G 2014 Nuclear cusp conditions and their fulfillment in molecular calculations with slater basis sets Int. J. Quant. Chem. 114 1393

    Article  Google Scholar 

  32. Kolos W and Roothaan C C J 1960 Correlated orbitals for the ground state of the hydrogen molecule Rev. Mod. Phys. 32 205

    Article  MathSciNet  CAS  ADS  Google Scholar 

  33. Roman S 2019 Umbral Calculus (Dover Books on Mathematics) (New York: Dover Publications)

    Google Scholar 

  34. Boyadzhiev K 2016 Lah numbers, laguerre polynomials of order negative one, and the nth derivative of exp(1/x) Acta Univ. Sapientiae Math 8 22

  35. Gonzales K J M 2016 q-lah numbers, laguerre congurations and rook placements J. Math. Soc. Philipp. 42 29

    Google Scholar 

  36. Pilar F L1968 Elementary quantum chemistry Quantum Mechanics (New York: McGraw-Hill)

  37. McQuarrie D A 2008 Quantum Chemistry 2nd edn. (New York: University Science Books)

  38. Messiah A 1999 Quantum Mechanics (Dover books on physics) (New York: Dover Publications)

    Google Scholar 

  39. Arfken G B and Weber H J 2005 Mathematical Methods for Physicists (US: Elsevier)

    Google Scholar 

  40. Griffiths D J 1999 Introduction to Electrodynamics (New Jersey: Prentice Hall)

    Google Scholar 

  41. Jackson J D 1999 Classical Electrodynamics (New York: John Wiley & Sons)

    Google Scholar 

  42. Jeffrey A and Zwillinger D 2000 Table of Integrals, Series, and Products (Burlington: Elsevier Science)

    Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Professor Shankar Prasad Bhattacharyya for his untiring inspiration and suggestions for pursuing the work. Our sincere thanks go to CSIR (SRF scheme) and FRP Grant under Institution of Eminence, University of Delhi (Ref. No./IoE/2021/12/FRP) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kuntal Hazra.

Additional information

Dedicated to Prof. S.P. Bhattacharyya on the occasion of his 75th birthday.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems.

Appendix A Standard Equations and Integrals

Appendix A Standard Equations and Integrals

Associated Laguerre Polynomial39

$$\begin{aligned}&L^{\mu }_{k}(x)=\sum _{m=0}^{k}(-1)^m\frac{(\mu +k)!}{(k-m)!(\mu +m)!m!}x^m \nonumber \\&\quad \text {where}\quad \mu >-1 \end{aligned}$$
(A1)

Lower and Upper Incomplete Gamma function39

$$\begin{aligned}&\gamma (a,x)=\int _{0}^{x}e^{-t}t^{a-1}dt=(a-1)!\bigg (1-e^{-x}\sum _{s=0}^{a-1}\frac{x^s}{s!}\bigg )\nonumber \\&\Gamma (a,x)=\int _{x}^{\infty }e^{-t}t^{a-1}dt=(a-1)!\bigg (e^{-x}\sum _{s=0}^{a-1}\frac{x^s}{s!}\bigg )\nonumber \\&\text {where}\quad {Re(a)\ge 0} \end{aligned}$$
(A2)

Sheffer identity33

$$\begin{aligned} L_n^\alpha (x+y)=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) L_k^\alpha (x)L_{n-k}^{-1}(y) \end{aligned}$$
(A3)

\(\underline{{\textbf {Relation between}}\ L_n^{-1}\ {\textbf {and Lah number,}}\ L(n,k)}\)34,35

$$\begin{aligned} L_n^{-1}(x)=\frac{1}{n!}\sum _{k=0}^{n}L(n,k)(-x)^k=\sum _{k=0}^{n}\left( {\begin{array}{c}n-1\\ k-1\end{array}}\right) \frac{(-x)^k}{k!} \end{aligned}$$
(A4)

Standard integral42

$$\begin{aligned}&\int x^ne^{bx}dx=e^{bx}\sum _{k=0}^{n}\frac{(-1)^k\,{^nP_k}x^{n-k}}{b^{k+1}}\nonumber \\ {}&\int x^ne^{-bx}dx=-e^{-bx}\sum _{k=0}^{n}\frac{{^nP_k}\,x^{n-k}}{b^{k+1}} \end{aligned}$$
(A5)

Recurrence Relations39

$$\begin{aligned}&a) \int Y_l^{m*}Y_0^0Y_l^md\Omega =\sqrt{\frac{1}{4\pi }}\nonumber \\&b) \int Y_{l+1}^{m*}Y_1^0Y_l^md\Omega =\sqrt{\frac{3}{4\pi }}\sqrt{\frac{(l-m+1)(l+m+1)}{(2l+1)(2l+3)}}\nonumber \\&c) \int Y_{l-1}^{m*}Y_1^0Y_l^md\Omega =\sqrt{\frac{3}{4\pi }}\sqrt{\frac{(l-m)(l+m)}{(2l+1)(2l-1)}}\nonumber \\&d) \int Y_{l+1}^{m+1*}Y_1^1Y_l^md\Omega =\sqrt{\frac{3}{8\pi }}\sqrt{\frac{(l+m+1)(l+m+2)}{(2l+1)(2l+3)}}\nonumber \\&e) \int Y_{l-1}^{m+1*}Y_1^1Y_l^md\Omega =-\sqrt{\frac{3}{8\pi }}\sqrt{\frac{(l-m)(l-m-1)}{(2l+1)(2l-1)}}\nonumber \\&f) \int Y_{l+1}^{m-1*}Y_1^{-1}Y_l^md\Omega =\sqrt{\frac{3}{8\pi }}\sqrt{\frac{(l-m+1)(l-m+2)}{(2l+1)(2l+3)}}\nonumber \\&g) \int Y_{l-1}^{m-1*}Y_1^{-1}Y_l^md\Omega =-\sqrt{\frac{3}{8\pi }}\sqrt{\frac{(l+m)(l+m-1)}{(2l+1)(2l-1)}} \end{aligned}$$
(A6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapil, B., Hazra, R.K. Analytical two-center one-electron overlap and exchange integrals for \(^{1}\Sigma\) states: Lah number guided Coulomb Green function of H-like s-orbitals. J Chem Sci 135, 54 (2023). https://doi.org/10.1007/s12039-023-02153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02153-6

Navigation