Skip to main content
Log in

Synthesis of anisotropic rod-like gold nanostructures in organic media

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

A Correction to this article was published on 18 November 2021

This article has been updated

Abstract

Synthesis of anisotropic rod-like gold nanostructures was carried out in chloroform employing a modified ascorbic acid derivative as a reducing agent in the presence and absence of seed particles. The seed particles and/or the chloroaurate ions were phase transferred to the organic media using n-octadecyl amine. High-resolution transmission electron microscopy analysis clearly revealed that the anisotropic structures are single crystalline in nature. The stabilization of certain crystallographic faces of anisotropic gold nanostructures by amines is invoked to explain the formation of these structures.

Graphic abstract

Synopsis

A convenient way to synthesize anisotropic gold nanorod like structures directly in non-polar organic media employing a modified ascorbic acid derivative as a reducing agent is being reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Change history

References

  1. Faraday M 1857 The Bakerian Lecture — Experimental Relations of Gold (and other metals) to Light Philos. Trans. R. Soc. Lond. 147 145

    Google Scholar 

  2. Turkevich J, Stevenson P C and Hillier J 1951 A study of the nucleation and growth processes in the synthesis of colloidal gold Discuss Faraday Soc. 11 55

    Article  Google Scholar 

  3. Frens G 1973 Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions Nat. Phys. Sci. 241 20

    Article  CAS  Google Scholar 

  4. Ortiz-Castillo J E, Gallo-Villanueva R C, Madou M J and Perez-Gonzalez V H 2020 Anisotropic gold nanoparticles: A survey of recent synthetic methodologies Coord. Chem. Rev. 425 213489

  5. Naveenraj S, Ramaligna V M, Jerry J W, Abdullaha M A and Samabandam A 2016 Gold Triangular Nanoprisms and Nanodecahedra: Synthesis and Interaction Studies with Luminol toward Biosensor Applications Langmuir 32 11854

    Article  CAS  Google Scholar 

  6. Christopher G K and Tuan V D 2008 Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization J. Phys. Chem. C 112 18849

    Article  Google Scholar 

  7. Sau T K and Murphy C J 2004 Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution Langmuir 20 6414

    Article  CAS  Google Scholar 

  8. Nikoobakht B and El-Sayed M A 2001 Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods Langmuir 17 6368

    Article  CAS  Google Scholar 

  9. (a) Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M and Mulvaney P 2005 Gold nanorods: Synthesis, characterization and applications Coord. Chem. Rev. 249 1870; (b) Grzelcak M, Perez-Juste J, Mulvaney P and Liz-Marzan L M 2008 Shape control in gold nanoparticle synthesis Chem. Soc. Rev. 37 1783; (c) Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E and Li T 2005 Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications J. Phys. Chem. B 109 13857; (d) Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E and Li T 2005 Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications J. Phys. Chem. B 109 13857; (e) Nikoobakht B and El-Sayed M A 2003 Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method Chem. Mat. 15 1957; (f) Kim F, Song J H and Yang P 2002 Photochemical Synthesis of Gold Nanorods J. Am. Chem. Soc. 124 14316

  10. Centi S F, Ratto F, Tatini S L and Pini R 2018 Ready-to-use protein G-conjugated gold nanorods for biosensing and biomedical applications J. Nanobiotechnol. 16 5

    Article  CAS  Google Scholar 

  11. Chenxu Y and Irudayaraj J 2007 Multiplex Biosensor Using Gold Nanorods Anal. Chem. 79 572

    Article  Google Scholar 

  12. Keying X, Junwei S, Ali P, Thirupandiyur S, Udayakumar N D, Weizhao Z, et al. 2018 Plasmonic Optical Imaging of Gold Nanorods Localization in Small Animals Sci. Rep. 8 9342

    Article  Google Scholar 

  13. Megan A M, Moustafa R K, Ali L, Austin A, Rachel D N and El-Sayed M A 2014 The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments J. Phys. Chem. B 118 1319

    Article  Google Scholar 

  14. Link S and El-Sayed M A 2000 Shape and size dependence of radiative, nonradiative and photothermal properties of gold nanocrystals Int. Rev. Phys. Chem. 19 409

    Article  CAS  Google Scholar 

  15. Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, et al. 2005 Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications J. Phys. Chem. B 109 13857

    Article  CAS  Google Scholar 

  16. Nikoobakht B and El-Sayed M A 2003 Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method Chem. Mat. 15 1957

    Article  CAS  Google Scholar 

  17. Foss C A Jr, Hornyak G L, Stockert J A and Martin C R 1992 Optical Properties of Composite Membranes Containing Arrays of Nanoscopic Gold Cylinders J. Phys. Chem. 96 7497

    Article  CAS  Google Scholar 

  18. Martin C R 1994 Nanomaterials: A Membrane-Based Synthetic Approach Science 266 1961

  19. Martin C R 1996 Membrane - Based Synthesis of Nanomaterials Chem. Mater. 8 1739

    CAS  Google Scholar 

  20. Wang Z L, Gao R P, Nikoobakht B and El-Sayed M A 2000 Surface Reconstruction of the Unstable 110 Surface in Gold Nanorods J. Phys. Chem. B 104 5417

    Article  CAS  Google Scholar 

  21. Wang Z L, Mohamed M B, Link S and El-Sayed M A 1999 Crystallographic facets and shapes of gold nanorods of different aspect ratios Surf. Sci. 440 809

    Google Scholar 

  22. Kim F, Song J H and Yang P 2002 Photochemical Synthesis of Gold Nanorods J. Am. Chem. Soc. 124 14316

    Article  CAS  Google Scholar 

  23. Park K, Yi Y, Jawaid A, Busch R, Schantz A B, Streit J, et al. 2020 Toward an Alkahest Canopy for Gold Nanorod Stability in Water and Organic Solvents J. Phys. Chem. C 124 11730

    Article  CAS  Google Scholar 

  24. Sastry M 2003 Phase transfer protocols in nanoparticle synthesis Curr. Sci. 85 1735

    CAS  Google Scholar 

  25. Lista M, Dylan Z L and Mulvaney P 2014 Phase Transfer of Noble Metal Nanoparticles to Organic Solvents Langmuir 30 1932

    Article  CAS  Google Scholar 

  26. Jun Y, Jim Y L and Jackie Y Y 2011 Phase transfer and its applications in nanotechnology Chem. Soc. Rev. 40 1672

    Article  Google Scholar 

  27. John S, Stephen J and David W 2011 Biological applications of gold nanorods Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3 100

    Article  Google Scholar 

  28. Prathap C S, Pasricha R, Bhatta U M, Satyam P V and Sastry M 2007 Synthesis of Gold Nanorods in Organic Media J. Nanosci. Nanotechnol. 7 2808

    Article  Google Scholar 

  29. Murugadoss A, Pasricha R and Chattopadhyay A 2007 Ascorbic acid as a mediator and template for assembling metallic nanoparticles J. Colloid Interface Sci. 311 303

    Article  CAS  Google Scholar 

  30. Vemula P K, Aslam U, Mallia V A and John G 2007 In Situ Synthesis of Gold Nanoparticles Using Molecular Gels and Liquid Crystals from Vitamin-C Amphiphiles Chem. Mater. 19 138

    Article  CAS  Google Scholar 

  31. Jung M E and Shaw T J 1980 Total Synthesis of (R)-Glycerol Acetonide and the Antiepileptic and Hypotensive Drug (-)-γ-Amino-/β-hydroxybutyric Acid (GABOB): Use of Vitamin C as a Chiral Starting Material J. Am. Chem. Soc. 102 6304

    Article  CAS  Google Scholar 

  32. Olabisi A O and Wimalasena K 2004 Rational Approach to Selective and Direct 2-O-Alkylation of 5,6-O-Isopropylidine-L-ascorbic Acid J. Org. Chem. 69 7026

    Article  CAS  Google Scholar 

  33. (a) Liu M, Guyot-Sionnest P 2005 Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids J. Phys. Chem. B 109 22192; (b) Ryu HJ, Sanchez L, Keul H A, Raj A and Bockstaller M R 2008 Imidazolium-Based Ionic Liquids as Efficient Shape-Regulating Solvents for the Synthesis of Gold Nanorods Angew. Chem. Int. Ed. 47 7639; (c) Walsh M J, Tong W, Katz-Boon H, Mulvaney P, Etheridge J and Funston A M A 2017 Mechanism for Symmetry Breaking and Shape Control in Single Crystal Gold Nanorods Acc. Chem. Res. 50 2925

  34. Johnson C J, Dujardin E, Davis S A, Murphy C J and Mann S 2002 Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis J. Mater. Chem. 12 1765

    Article  CAS  Google Scholar 

  35. Lisiecki I, Filankembo A, Sack-Kongehl H, Weiss K, Pileni M P and Urban J 2000 Structural investigations of copper nanorods by high-resolution TEM J. Phys. Rev. B 61 4968

    Article  CAS  Google Scholar 

  36. (a) Pong B K, Lee J Y and Trout B L 2005 First Principles Computational Study for Understanding the Interactions between ssDNA and Gold Nanoparticles: Adsorption of Methylamine on Gold Nanoparticulate Surfaces Langmuir 21 11599; (b) Kumar A, Mandal S, Selvakannan P R, Pasricha R, Mandale A B and Sastry M 2003 Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles Langmuir 19 6277; (c) Leff D V, Brandt L and Heath J R 1996 Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines Langmuir 12 4723

Download references

Acknowledgements

We thank the Ministry of Science Technology for funding through the Department of Science and Technology under the Green Chemistry Program (NO. SR/S5/GC-20/2007) and DST-UNANST @ NCL. PVM/SPC thank CSIR (New Delhi) and PP thanks UGC (New Delhi) for the financial support in the form of research fellowships. The authors thank Prof. P. V. Satyam, IIT Bhubaneswar, India for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhagavatula L V Prasad or Chepuri V Ramana.

Additional information

Special Issue on Beyond Classical Chemistry

The original online version of this article was revised: to include the correct supplementary file.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 693 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, B.L.V., Sivasankaran, P.C., Patel, P. et al. Synthesis of anisotropic rod-like gold nanostructures in organic media. J Chem Sci 133, 106 (2021). https://doi.org/10.1007/s12039-021-01952-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01952-z

Navigation