Skip to main content

Advertisement

Log in

Temperature-dependent anomalous Mn2+ emission and excited state dynamics in Mn2+-doped MAPbCl3-xBrx nanocrystals

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In hybrid perovskites, MAPbI3 and MAPbBr3 have been extensively studied for their optical and photovoltaic properties, but MAPbCl3 is significantly less investigated for its optical and photovoltaic properties due to its low photoluminescence quantum yield (PL QY) and a large band gap. However, the large band gap makes it a suitable host for doping transition metal ions to explore new optical properties. We synthesized nanocrystals (NCs) of MAPbCl3 doped with Mn2+ by simple ligand assisted reprecipitation method. The reaction temperature and Pb to Mn feed ratio were optimized by preparing a series of Mn2+-doped MAPbCl3 NCs. The prepared NCs show bright Mn2+ emission with ~13% PL QY suggesting an efficient energy transfer from host NCs to Mn2+. Since the large bandgap of MAPbCl3 precludes the possibility of investigating temperature-dependent PL and lifetime measurements to understand the excited state dynamics, we carried out these experiments on Mn2+ doped MAPbCl2.7Br0.3 with the Br concentration adjusted to bring the bandgap of the alloyed system within the limits of the experimental technique. Our studies establish an anomalous behavior of Mn2+ PL emission in this host. These results reveal the origin of a temperature mediated energy transfer from exciton to Mn2+ and provide an understanding of the underlying mechanisms of PL properties of this new class of NCs.

Graphical abstract

SYNOPSIS: Nanocrystals (NCs) of MAPbCl3-xBrx doped with Mn2+ were prepared by simple ligand assisted reprecipitation method. Reaction temperature and Mn2+ concentrations were optimized to achieve maximum Mn2+ emission. The temperature-dependent photoluminescence results reveal the origin of temperature mediated energy transfer from exciton to Mn2+ in MAPbCl3-xBrx NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Schmidt L C, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, et al. 2014 Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles J. Am. Chem. Soc. 136 850

  2. Xing J, Yan F, Zhao Y, Chen S, Yu H, Zhang Q, et al. 2016 High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles ACS Nano 10 6623

  3. Tong Y, Ehrat F, Vanderlinden W, Cardenas-Daw C, Stolarczyk JK, Polavarapu L and Urban AS 2016 Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets ACS Nano 10 10936

  4. Weidman M C, Seitz M, Stranks S D and Tisdale W A 2016 Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation Metal, and Halide Composition ACS Nano 10 7830

  5. Mir W J, Jagadeeswararao M, Das S and Nag A 2017 Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets ACS Energy Lett. 2 537

  6. Vybornyi O, Yakunin S and Kovalenko M V 2016 Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals Nanoscale 8 6278

  7. Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C and Xiong Q 2014 Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices Adv. Opt. Mater. 2 838

  8. Huang S, Li Z, Kong L, Zhu N, Shan A and Li L 2016 Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in “Waterless” Toluene J. Am. Chem. Soc. 138 5749

  9. Gonzalez-Carrero S, Galian R E and Perez-Prieto J 2015 Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles J. Mater. Chem. A 3 9187

  10. Huang H, Susha A S, Kershaw S V, Hung T F and Rogach A L 2015 Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature Adv. Sci. 2 1500194

  11. Zhang F, Huang S, Wang P, Chen X, Zhao S, Dong Y and Zhong H 2017 Colloidal Synthesis of Air-Stable CH3NH3PbI3 Quantum Dots by Gaining Chemical Insight into the Solvent Effects Chem. Mater. 29 3793

  12. Jang D M, Kim D H, Park K, Park J, Lee J W and Song J K 2016 Ultrasound synthesis of lead halide perovskite nanocrystals J. Mater. Chem. C 4 10625

  13. Buin A, Comin R, Xu J, Ip A H and Sargent E H 2015 Halide-Dependent Electronic Structure of Organolead Perovskite Materials Chem. Mater. 27 4405

  14. Wehrenfennig C, Liu M, Snaith H J, Johnston M B and Herz L M 2014 Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3–xClx J. Phys. Chem. Lett. 5 1300

  15. Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites Science 338 643

  16. Liu M, Johnston M B and Snaith H J 2013 Efficient planar heterojunction perovskite solar cells by vapour deposition Nature 501 395

  17. Du M H 2014 Efficient carrier transport in halide perovskites: theoretical perspectives J. Mater. Chem. A 2 9091

  18. Chueh C-C, Liao C-Y, Zuo F, Williams S T, Liang P-W and Jen A K Y 2015 The roles of alkyl halide additives in enhancing perovskite solar cell performance J. Mater. Chem. A 3 9058

  19. Lian Z, Yan Q, Gao T, Ding J, Lv Q, Ning C, et al. 2016 Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 108 cm–3 J. Am. Chem. Soc. 138 9409

  20. Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, et al. 2013 MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties Chem. Mater. 25 4613

  21. Cao C, Zhang C, Yang J, Sun J, Pang S, Wu H, et al. 2016 Iodine and Chlorine Element Evolution in CH3NH3PbI3–xClx Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells Chem. Mater. 28 2742

  22. Sharenko A and Toney M F 2016 Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Performance in Solar Cells J. Am. Chem. Soc. 138 463

  23. Maculan G, Sheikh A D, Abdelhady A L, Saidaminov M I, Haque M A, Murali B, et al. 2015 CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector J. Phys. Chem. Lett. 6 3781

  24. Norris D J, Yao N, Charnock F T and Kennedy T A 2001 High-Quality Manganese-Doped ZnSe Nanocrystals Nano Lett. 1 3

  25. Radovanovic P V, Barrelet C J, Gradečak S, Qian F and Lieber C M 2005 General Synthesis of Manganese-Doped II−VI and III−V Semiconductor Nanowires Nano Lett. 5 1407

  26. Nag A, Sapra S, Nagamani C, Sharma A, Pradhan N, Bhat S V and Sarma D D 2007 A Study of Mn2+ Doping in CdS Nanocrystals Chem. Mater. 19 3252

  27. Viswanatha R, Naveh D, Chelikowsky J R, Kronik L and Sarma D D 2012 Magnetic Properties of Fe/Cu Codoped ZnO Nanocrystals J. Phys. Chem. Lett. 3 2009

  28. Beaulac R, Archer P I, Liu X, Lee S, Salley G M, Dobrowolska M, Furdyna J K and Gamelin D R 2008 Spin-Polarizable Excitonic Luminescence in Colloidal Mn2+-Doped CdSe Quantum Dots Nano Lett. 8 1197

  29. Karan N S, Sarma D D, Kadam R M and Pradhan N 2010 Doping Transition Metal (Mn or Cu) Ions in Semiconductor Nanocrystals J. Phys. Chem. Lett. 1 2863

  30. Yu J H, Liu X, Kweon K E, Joo J, Park J, Ko K-T, et al. 2010 Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons Nat. Mater. 9 47

  31. Bussian D A, Crooker S A, Yin M, Brynda M, Efros A L and Klimov V I 2009 Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals Nat. Mater. 8 35

  32. Eilers J, Groeneveld E, de Mello Donegá C and Meijerink A 2012 Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals J. Phys. Chem. Lett. 3 1663

  33. Bhargava R N, Gallagher D, Hong X and Nurmikko A 1994 Optical properties of manganese-doped nanocrystals of ZnS Phys. Rev. Lett. 72 416

  34. Hazarika A, Layek A, De S, Nag A, Debnath S, Mahadevan P, Chowdhury A and Sarma D D 2013 Ultranarrow and Widely Tunable Mn2+-Induced Photoluminescence from Single Mn-Doped Nanocrystals of ZnS-CdS Alloys Phys. Rev. Lett. 110 267401

  35. Nag A and Sarma DD 2007 White Light from Mn2+-Doped CdS Nanocrystals: A New Approach J. Phys. Chem. C 111 13641

  36. Hazarika A, Pandey A and Sarma D D 2014 Rainbow Emission from an Atomic Transition in Doped Quantum Dots J. Phys. Chem. Lett. 5 2208

  37. Cheng S J 2008 Theory of magnetism in diluted magnetic semiconductor nanocrystals Phys. Rev. B 77 115310

  38. Chen H Y, Chen T Y and Son D H 2010 Measurement of Energy Transfer Time in Colloidal Mn-Doped Semiconductor Nanocrystals J. Phys. Chem. C 114 4418

  39. Arunkumar P, Gil K H, Won S, Unithrattil S, Kim Y H, Kim H J and Im W B 2017 Colloidal Organolead Halide Perovskite with a High Mn Solubility Limit: A Step Toward Pb-Free Luminescent Quantum Dots J. Phys. Chem. Lett. 8 4161

  40. Li X, Guo Y and Luo B 2018 Improved Stability and Photoluminescence Yield of Mn2+-Doped CH3NH3PbCl3 Perovskite Nanocrystals Crystals 8 4

  41. Jeon M-G, Yun S, Kirakosyan A, Sihn M R, Soon S-G and Choi J 2019 Scale-Up Synthesis of Organometal Halide Perovskite Nanocrystals (MAPbX3, X = Cl, Br, and I) ACS Sustainable Chem. Eng. 7 19369

  42. Liu H, Wu Z, Shao J, Yao D, Gao H, Liu Y, Yu W, Zhang H and Yang B 2017 CsPbxMn1–xCl3 Perovskite Quantum Dots with High Mn Substitution Ratio ACS Nano 11 2239

  43. Nag A, Chakraborty S and Sarma D D 2008 To Dope Mn2+ in a Semiconducting Nanocrystal J. Am. Chem. Soc. 130 10605

  44. Zhang F, Zhong H, Chen C, Wu X-g, Hu X, Huang H, Han J, Zou B and Dong Y 2015 Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology ACS Nano 9 4533

  45. Shannon R 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallogr. A 32 751

  46. Travis W, Glover E N K, Bronstein H, Scanlon D O and Palgrave R G 2016 On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system Chem. Sci. 7 4548

  47. Kieslich G, Sun S and Cheetham A K 2014 Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog Chem. Sci. 5 4712

  48. Sapra S and Sarma D D 2004 Evolution of the electronic structure with size in II-VI semiconductor nanocrystals Phys. Rev. B 69 125304

  49. Viswanatha R, Sapra S, Saha-Dasgupta T and Sarma D D 2005 Electronic structure of and quantum size effect in III-V and II-VI semiconducting nanocrystals using a realistic tight binding approach Phys. Rev. B 72 045333

  50. Beaulac R, Archer P I, van Rijssel J, Meijerink A and Gamelin D R 2008 Exciton Storage by Mn2+ in Colloidal Mn2+-Doped CdSe Quantum Dots Nano Lett. 8 2949

  51. Yuan X, Ji S, De Siena M C, Fei L, Zhao Z, Wang Y, et al. 2017 Photoluminescence Temperature Dependence, Dynamics, and Quantum Efficiencies in Mn2+-Doped CsPbCl3 Perovskite Nanocrystals with Varied Dopant Concentration Chem. Mater. 29 8003

  52. Xu K, Lin C C, Xie X and Meijerink A 2017 Efficient and Stable Luminescence from Mn2+ in Core and Core-Isocrystalline Shell CsPbCl3 Perovskite Nanocrystals Chem. Mater. 29 4265

  53. Sapra S, Prakash A, Ghangrekar A, Periasamy N and Sarma D D 2005 Emission Properties of Manganese-Doped ZnS Nanocrystals J. Phys. Chem. B 109 1663

  54. Viswanatha R, Pietryga J M, Klimov V I and Crooker S A 2011 Spin-Polarized Mn2+ Emission from Mn-Doped Colloidal Nanocrystals Phys. Rev. Lett. 107 067402–067405

  55. Govinda S, Kore B P, Swain D, Hossain A, De C, Guru Row T N and Sarma D 2018 Critical Comparison of FAPbX3 and MAPbX3 (X= Br and Cl): How Do They Differ? J. Phys. Chem. C 122 13758

  56. Vlaskin V A, Janssen N, van Rijssel J, Beaulac R and Gamelin D R 2010 Tunable Dual Emission in Doped Semiconductor Nanocrystals Nano Lett. 10 3670

  57. Yuan X, Zheng J, Zeng R, Jing P, Ji W, Zhao J, Yang W and Li H 2014 Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots Nanoscale 6 300

  58. McLaurin E J, Bradshaw L R and Gamelin D R 2013 Dual-Emitting Nanoscale Temperature Sensors Chem. Mater. 25 1283

  59. Chen W, Su F, Li G, Joly A G, Malm J-O and Bovin J-O 2002 Temperature and pressure dependences of the Mn2+ and donor–acceptor emissions in ZnS:Mn2+ nanoparticles J. Appl. Phys. 92 1950

  60. Rabouw F T, Kamp M, van Dijk-Moes R J A, Gamelin D R, Koenderink A F, Meijerink A and Vanmaekelbergh D 2015 Delayed Exciton Emission and Its Relation to Blinking in CdSe Quantum Dots Nano Lett. 15 7718

  61. Chirvony V S, González-Carrero S, Suárez I, Galian R E, Sessolo M, Bolink H J, et al. 2017 Delayed Luminescence in Lead Halide Perovskite Nanocrystals J. Phys. Chem. C 121 13381

  62. Cordones A A and Leone S R 2013 Mechanisms for charge trapping in single semiconductor nanocrystals probed by fluorescence blinking Chem. Soc. Rev. 42 3209

  63. Parobek D, Roman B J, Dong Y, Jin H, Lee E, Sheldon M and Son D H 2016 Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals Nano Lett. 16 7376

  64. Chen H Y, Maiti S and Son D H 2012 Doping Location-Dependent Energy Transfer Dynamics in Mn-Doped CdS/ZnS Nanocrystals ACS Nano 6 583

  65. Chung J H, Ah C S and Jang D-J 2001 Formation and Distinctive Decay Times of Surface- and Lattice-Bound Mn2+ Impurity Luminescence in ZnS Nanoparticles J. Phys. Chem. B 105 4128

  66. Xu K and Meijerink A 2018 Tuning Exciton–Mn2+ Energy Transfer in Mixed Halide Perovskite Nanocrystals Chem. Mater. 30 5346

  67. Varshni Y P 1967 Temperature dependence of the energy gap in semiconductors Physica 34 149

  68. Liu W, Lin Q, Li H, Wu K, Robel I, Pietryga J M and Klimov V I 2016 Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content J. Am. Chem. Soc. 138 14954

Download references

Acknowledgements

The authors thank Mr. Vasudeva from JNCASR for help during ICP-AES measurements. BPK acknowledges UGC, India, for a D.S. Kothari Postdoctoral Fellowship. The authors thank the Science and Engineering Research Board and the Department of Science and Technology, Government of India for support of their research. DDS thanks Jamsetji Tata Trust for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D D Sarma.

Additional information

Special Issue on Beyond Classical Chemistry

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1486 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kore, B.P., Das, S. & Sarma, D.D. Temperature-dependent anomalous Mn2+ emission and excited state dynamics in Mn2+-doped MAPbCl3-xBrx nanocrystals. J Chem Sci 133, 64 (2021). https://doi.org/10.1007/s12039-021-01919-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01919-0

Keywords

Navigation