Skip to main content
Log in

Relationship between the morphology for the photo-electrode of copper bismuth oxide and the photo-electrochemical activity related to water reduction

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The relationship between the morphology of the photo-electrode of copper bismuth oxide (CuBi2O4) and the activity to generate cathodic photo-current in a deoxygenated aqueous electrolyte was investigated. The electrodes were fabricated by the electrodeposition of the precursor on a conductive substrate following heat treatment. As a simple comparison, a randomly porous electrode was compared with a dense electrode. A dense electrode and a porous electrode were fabricated by selecting the potential to deposit the precursor; formation of the electrode was confirmed by measuring X-ray diffraction patterns and scanning electron microscope images. The values of the absorbed photon to current efficiency were calculated by measuring steady photocurrents in a deoxygenated electrolyte at a constant potential under irradiation of monochromatic visible lights. The dense electrode shows larger values than the porous electrode. To consider the difference in the values between the electrodes, the values were also calculated for the current generated in the electrolyte of dissolved oxygen to scavenge electrons. Eventually, it is considered that for CuBi2O4 electrodes, dense morphologies are more suitable than porous morphologies to produce hydrogen by photo-electrochemical water reduction in terms of charge separation inside the electrode.

Graphic abstract

Dense and porous photo-electrodes of copper bismuth oxide were fabricated by selecting the potential to deposit the precursor and following heat treatment. The former is more efficient to generate the current for water photo-reduction in a deoxygenated aqueous electrolyte due to more facile transfer of electrons inside the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A and Lewis N S 2010 Solar Water Splitting Cells Chem. Rev. 110 6446

    Article  CAS  Google Scholar 

  2. Chen X, Shen S, Guo L and Mao S S 2010 Semiconductor-based Photocatalytic Hydrogen Generation Chem. Rev. 110 6503

    Article  CAS  Google Scholar 

  3. Bera R K, Bhynia P, Chakrabartty S and Raj C R 2015 Visible-Light-Driven Production of Poly(a-terthiophene)–Au Nanoparticle Functional Hybrid Material Chem. Nano. Mat. 1 586

    CAS  Google Scholar 

  4. Iwase A, Kato H and Kudo A 2013 The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction Appl. Catal. B Environ. 136-137 89

    Article  Google Scholar 

  5. Yu K, Zhang C, Chang Y, Feng Y, Yang Z, Yang T, Lou L L and Liu S 2017 Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance Appl. Catal. B: Environ. 200 514

    Article  CAS  Google Scholar 

  6. Fujishima A and Honda K 1972 Electrochemical Photolysis of Water at a Semiconductor Electrode Nature 238 37

    Article  CAS  Google Scholar 

  7. Liu F, Lai Y, Wang B, Kuang S, Zhang Z, Li J and Liu Y 2010 Characterization of chemical bath deposited CdS thin films at different deposition temperature J. Alloy Compounds 493 305

    Article  CAS  Google Scholar 

  8. Abe R, Higashi M and Domen K 2010 Facile Fabrication of an Efficient Oxynitride TaON Photoanode for Overall Water Splitting into H2 and O2 under Visible Light Irradiation J. Am. Chem. Soc. 132 11828

    Article  CAS  Google Scholar 

  9. Nishikawa M, Fukuda M, Nakabayashi Y, Saito N, Ogawa N, Nakajima T, Shinoda K, Tsuchiya T and Nosaka Y 2016 A method to give chemically stabilities of photoelectrodes for water splitting: Compositing of a highly crystalized TiO2 layer on a chemically unstable Cu2O photocathode using laser-induced crystallization process Appl. Surf. Sci. 363 173

    Article  CAS  Google Scholar 

  10. Shi W, Zhang X, Li S, Zhang B, Wang M and Shen Y 2015 Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity Appl. Surf. Sci. 358 404

    Article  CAS  Google Scholar 

  11. Suryawanshi M P, Shin S W, Ghorpade U V, Gurav K V, Hong C W, Agawane G L, Vanalakar S A, Moon J H, Yun J H, Patil P S, Kim J H and Moholkar A V 2014 Improved photoelectrochemical performance of Cu2ZnSnS4 (CZTS) thin films prepared using modified successive ionic layer adsorption and reaction (SILAR) sequence Electrochim. Acta 150 136

    Article  CAS  Google Scholar 

  12. Bär M, Schubert B A, Marsen B, Krause S, Pookpanratana S, Unold T, Weinhardt L, Heske C and Schock H W 2011 Native oxidation and Cu-poor surface structure of thin film Cu2ZnSnS4 solar cell absorbers Appl. Phys. Lett. 99 112103

    Google Scholar 

  13. Nakabayashi Y, Nishikawa M and Nosaka Y 2014 Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production Electrochim. Acta 125 191

    Article  CAS  Google Scholar 

  14. Sharma G, Zhao Z, Sarker P, Nail B A, Wang J, Huda M N and Osterloh F E 2016 Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals J. Mater. Chem. A 4 2936

    Article  CAS  Google Scholar 

  15. Shi W, Guo F, Li M, Shi Y, Wu M and Tang Y 2019 Enhanced visible-light-driven photocatalytic H2 evolution on the novel nitrogen-doped carbon dots/CuBi2O4 microrods composite J. Alloy Compounds 775 511

    Article  CAS  Google Scholar 

  16. Cao D, Nasori N, Wang Z, Mi Y, Wen L, Yang Y, Qu S, Wang Z and Lei Y 2016 p-Type CuBi2O4: an easily accessible photocathodic material for high-efficiency water splitting J. Mater. Chem. 4 8995

    Article  CAS  Google Scholar 

  17. Wang F, Septina W, Chemseddine A, Abdi F F, Friedrich D, Bogdanoff P, Krol R, Tilley S D and Berglund S P 2017 Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency J. Am. Chem. Soc. 139 15094

    Article  CAS  Google Scholar 

  18. Arai T, Konishi Y, Iwasaki Y, Sugihara H and Sayama K 2007 High-Throughput Screening Using Porous Photoelectrode for the Development of Visible-Light-Responsive Semiconductors J. Comb. Chem. 9 574

    Article  CAS  Google Scholar 

  19. Berglund S P, Lee H C, Núñez P D, Bard A J and Mullins C B 2013 Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution Phys. Chem. Chem. Phys. 15 4554

    Article  CAS  Google Scholar 

  20. Zhang Z, Lindley S A, Dhall R, Bustillo K, Han W, Xie E and Cooper J K 2019 Beneficial CuO Phase Segregation in the Ternary p-Type Oxide Photocathode CuBi2O4 ACS Appl. Energy Mater. 2 4111

    CAS  Google Scholar 

  21. Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H and Sayama K 2007 Efficient Complete Oxidation of Acetaldehyde into CO2 over CuBi2O4/WO3 Composite Photocatalyst under Visible and UV Light Irradiation J. Phys. Chem. C 111 7574

    Article  CAS  Google Scholar 

  22. Song A, Plate P, Chemseddine A, Wang F, Abdi F F, Wollgarten M, Krol R and Berglund S P 2019 Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi2O4 thin film photocathodes J. Mater. Chem. A 7 9183

    Article  CAS  Google Scholar 

  23. Fujimoto J, Wang N, Saito R, Miseki Y, Gunji T and Sayama K 2014 WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting Int. J. Hydrog. Energy 39 2454

    Article  CAS  Google Scholar 

  24. Emin S, Respinis M, Mavrič T, Dam B, Valant M and Smith W A 2016 Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles Appl. Catal. A 523 130

    Article  CAS  Google Scholar 

  25. Nakabayashi Y, Nishikawa M and Nosaka Y 2016 Fabrication of bismuth copper vanadate electrodes through feasible chemical solution method for visible light-induced water oxidation J. Appl. Electrochem. 46 9

    Article  CAS  Google Scholar 

  26. Liu H, Nakamura R and Nakato Y 2005 Bismuth–Copper Vanadate BiCu2VO6 as a Novel Photocatalyst for Efficient Visible-Light-Driven Oxygen Evolution Chem. Phys. Chem. 6 2499

    CAS  Google Scholar 

  27. Hong S J, Jun H, Borse P H and Lee J S 2009 Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems Int. J. Hydrog. Energy 34 3234

    Article  CAS  Google Scholar 

  28. Yagi M, Maruyama S, Sone K, Nagai K and Norimatsu T 2008 Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film J. Solid State Chem. 181 175

    Article  CAS  Google Scholar 

  29. Kim E S, Nishimura N, Magesh G, Kim J Y, Jang J W, Jun H, Kubota J, Domen K and Lee J S 2013 Fabrication of CaFe2O4/TaON Heterojunction Photoanode for Photoelectrochemical Water Oxidation J. Am. Chem. Soc. 135 5375

    Article  CAS  Google Scholar 

  30. Wang F, Chemseddine A, Abdi F F, Krol R and Berglund S P 2017 Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films J. Mater. Chem. A 5 12838

    Article  CAS  Google Scholar 

  31. Gottesman R, Song A, Levine I, Krause M, Islam A T M N, Abou-Ras D, Dittrich T, Krol R and Chemseddine R 2020 Pure CuBi2O4 Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi2O3/CuO Grown by Pulsed Laser Deposition Adv. Funct. Mater. 30 1910832

    Article  CAS  Google Scholar 

  32. Berglund S P, Abdi F F, Bogdanoff P, Chemseddine A, Friedrich D and Krol R 2016 Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting Chem. Mater 28 4231

    CAS  Google Scholar 

  33. Xu Y, Jian J, Li F, Jia L and Wang H 2019 Porous CuBi2O4 photocathodes with rationally engineered morphology and composition towards high-efficiency photoelectrochemical performance J. Mater. Chem. A 7 21997

    Article  CAS  Google Scholar 

  34. Rodríguez-Gutiérrez I, García-Rodríguez R, Rodríguez-Pérez M, Vega-Poot A, Gattorno G R, Parkinson B A and Oskam G 2018 Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting J. Phys. Chem. C 122 27169

    Article  Google Scholar 

  35. Nasori N, Rubiyanto A and Endarko E 2019 Comparative Study of p-type CuBi2O4 Films and CuBi2O4 Nanopillars Photocathode for High Performance Photoelectrochemical Water Splitting J. Phys. Conf. Ser. 1373 012016

    Article  CAS  Google Scholar 

  36. Sachs M, Pastor E, Kafizas A and Durrant J R 2016 Evaluation of Surface State Mediated Charge Recombination in Anatase and Rutile TiO2 J. Phys. Chem. Lett. 7 3742

    Article  CAS  Google Scholar 

  37. Miyasato R, Sato H, Yano T, Fujiwara M and Hashimoto H 2018 Surface and bulk carrier recombination dynamics of rutile type TiO2 powder as revealed by sub-ns time-resolved diffuse reflection spectroscopy J. Photochem. Photobiol. A 358 452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Nakabayashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakabayashi, Y., Nishikawa, M. & Saito, N. Relationship between the morphology for the photo-electrode of copper bismuth oxide and the photo-electrochemical activity related to water reduction. J Chem Sci 133, 12 (2021). https://doi.org/10.1007/s12039-020-01876-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01876-0

Keywords

Navigation