Skip to main content
Log in

Electrochemical study of two structurally related compounds \(\hbox {FeVMoO}_{7}\) and \(\hbox {CrVMoO}_{7 }\) synthesized by sol–gel method

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

\(\hbox {FeVMoO}_{7}\) and \(\hbox {CrVMoO}_{7}\) phases were synthesized by sol–gel method for the first time and used as promising cathode materials for Lithium ion batteries. Effortless and flexible procedure for the preparation of \(\hbox {FeVMoO}_{7}\) and \(\hbox {CrVMoO}_{7}\) via a facile sol–gel method was developed. The structure, morphology and the electrochemical properties have been studied by X-ray diffraction (XRD), scanning electronic microscope (SEM) and galvanostatic charge-discharge test measurements. Study of these compounds as electrode materials was motivated by the three-dimensional structure and the redox couples of Fe, V and Mo. The first cycle discharge capacity values for \(\hbox {FeVMoO}_{7}\) and \(\hbox {CrVMoO}_{7}\) phases were 284 \(\hbox {mAhg}^{-1}\) and 264 \(\hbox {mAhg}^{-1}\), respectively, in the voltage range of 3.2–1.5 V. The discharge capacity of \(\hbox {FeVMoO}_{7}\) was 160 \(\hbox {mAhg}^{-1}\) after 20 cycles.

Graphical Abstract 

Synopsis FeVMoO\(_{7}\) and CrVMoO\(_{7}\) phases have been studied as electrode materials for the first time. Sol–gel method was adopted, for the first time, to synthesize these phases and the phases exhibit good electrochemical behavior. Electrochemical lithium insertion into three dimensional phases of FeVMoO\(_{7}\) and CrVMoO\(_{7}\) is feasible and good cycling behavior was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shirakawa J, Nakayama M, Wakihara M and Uchimoto Y 2007 Changes in electronic structure upon lithium insertion into \(\text{ Fe }_{2}(\text{ SO }_{4})_{3}\) and \(\text{ Fe }_{2}(\text{ MoO }_{4})_{3}\) investigated by X-ray absorption spectroscopy J. Phys. Chem. B 111 142

    Article  Google Scholar 

  2. Alvarez-Vega M, Amador U and Arroyo- de Dompablo M E 2005 Electrochemical study of \(\text{ Li }_{3}\text{ Fe }(\text{ MoO }_{4})_{3}\) as positive electrode in lithium cells J. Electrochem. Soc. 152 A1306

    Article  CAS  Google Scholar 

  3. Leyzerovich N N, Bramnik K G, Buhrmester T, Ehrenerg H and Fuess H 2004 Electrochemical intercalation of lithium in ternary metal molybdates \(\text{ MMoO }_{4}\) (M: Cu, Zn, Ni and Fe) J. Power Sources 127 76

    Article  CAS  Google Scholar 

  4. Morcrette M, Rozier P, Dupont L, Mugnier E, Sannier L, Galy J and Tarascon J M 2003 A reversible copper extrusion-insertion electrode for rechargeable Li batteries Nat. Mater. 2 755

    CAS  Google Scholar 

  5. Morcrette M, Martin P, Rozier P, Vezin H, Chevallier F, Laffont L, Poizot P and Tarascon J M 2005 Cu1.1V4O11: A new positive electrode material for rechargeable Li batteries Chem. Mater. 17 418

    Article  CAS  Google Scholar 

  6. Begam K M, Michael K M, Yap Y H T and Prabaharan S R S 2004 New lithiated nasicon-type \(\text{ Li }_{2}\text{ Ni }_{2}(\text{ MoO }_{4})_{3}\) for rechargeable lithium batteries Electrochem. Solid-State Lett. 7 A242

    Article  CAS  Google Scholar 

  7. Prabaharan S R S, Michael M S and Begam K M 2004 Synthesis of a polyanion cathode material, \(\text{ Li }_{2}\text{ Co }_{2}(\text{ MoO }_{4})_{3}\), and its electrochemical properties for lithium batteries Electrochem. Solid-State Lett. 7 A416

    Article  CAS  Google Scholar 

  8. Zachau-Christiansen B, West K and Jacobsen T 1985 Lithium insertion into \(\text{ VO }_{2}\)(B) Mater. Res. Bull. 20 485

    Article  CAS  Google Scholar 

  9. Murphy D W, Christian P A, Disalvo F J and Waszczak J V 1979 Lithium incorporation by vanadium pentoxide Inorg. Chem. 18 2800

    CAS  Google Scholar 

  10. Murphy D W, Christian P A, Disalvo F J, Carides J N and Waszczak J V 1981 Lithium incorporation by \(\text{ V }_{6}\text{ O }_{13}\) and related vanadium (+4,+5) oxide cathode materials J. Electrochem. Soc. 128 2053

    Article  CAS  Google Scholar 

  11. Pistoia G, Pasquali M, Wang G and Li L 1990 \(\text{ Li/Li }_{1+x}\text{ V }_{3}\text{ O }_{8}\) seconday batteries J. Electrochem. Soc. 137 2365

    Article  CAS  Google Scholar 

  12. Bouhedja L, Castro-Garcia S, Livage J and Julien C 1998 Lithium intercalation in \(\acute{\upalpha }\text{-Na }_{y}\text{ V }_{2}\text{ O }_{5}\) synthesized via the hydrothermal route Ionics 4 227

    Article  CAS  Google Scholar 

  13. Denis S, Baudrin E, Touboul M and Tarascon J M 1997 Synthesis and electrochemical properties of amorphous vanadates of general formula \(\text{ RVO }_{4}\) (R=In,Cr,Fe,Al,Y) vs. Li J. Electrochem. Soc. 144 4099

    Article  CAS  Google Scholar 

  14. Takeda Y, Itoh K, Kanno R, Icikawa T, Imamshi N and Yamamoto O 1991 Characteristics of Brannerite-type \(\text{ CuV }_{2-x }\text{ Mo }_{x}\text{ O }_{6}\) (\(0\le \text{ x }\le 1\)) cathodes for lithium cells J. Electrochem. Soc. 138 2566

    Article  CAS  Google Scholar 

  15. Andrukaitis E 1995 Reversible lithium intercalation in alkali metal vanadium bronzes \((\text{ M }_{x}\text{ V }_{6}\text{ O }_{13+\delta }\), where M=K, Rb or Cs) J. Power Sources 54 470

    Article  CAS  Google Scholar 

  16. Patoux S and Richardson T J 2007 Lithium insertion chemistry of some iron vanadates Electrochem. Commun. 9 485

    CAS  Google Scholar 

  17. Song J, Wang X, Ni X, Zheng H, Zhang Z, Ji M, Shen T and Wang X W 2005 Preparation of \(\text{ hexagonal-MoO }_{3}\) and electrochemical properties of lithium intercalation into the oxide Mater. Res. Bull. 40 1751

    Article  CAS  Google Scholar 

  18. Leroux F and Nazar L F 2000 Uptake of lithium by layered molybdenum oxide and its tin exchanged derivatives: high volumetric capacity materials Solid State Ionics 133 37

    Article  CAS  Google Scholar 

  19. Tsumura T and Inagaki M 1997 Lithium insertion/extraction reaction on crystalline \(\text{ MoO }_{3}\) Solid State Ionics 104 183

    Article  CAS  Google Scholar 

  20. James A C W P and Goodenough J B 1988 Structure and bonding in \(\text{ Li }_{2}\text{ MoO }_{3}\) and \(\text{ Li }_{2-x}\text{ MoO }_{3} (0 \le \text{ x } \le 1.7\)) J. Solid State Chem. 76 87

    Article  CAS  Google Scholar 

  21. Huang C K, Crouch-Baker S and Huggins R A 1988 Lithium insertion in several molybdenum(IV) oxide phases at room temperature J. Electrochem. Soc. 135 408

    Article  CAS  Google Scholar 

  22. Begam K M and Prabaharan S R S 2006 Improved cycling performance of nano-composite \(\text{ Li }_{2}\text{ Ni }_{2}(\text{ MoO }_{4})_{3}\) as a lithium battery cathode material J. Power Sources 159 319

    Article  CAS  Google Scholar 

  23. Michael M S, Begam K M, Cloke M and Prabaharan S R S 2008 New nasicon type oxyanion high capacity anode, \(\text{ Li }_{2}\text{ Co }_{2}(\text{ MoO }_{4})_{3}\), for lithium-ion batteries: preliminary studies J. Solid State Electrochem. 12 1025

    Article  CAS  Google Scholar 

  24. Tranchant A and Messina R 1988 A comparative electrochemical study of \(\text{ MoO }_{3},\text{ V }_{2}\text{ O }_{5}\) and \(\text{ MoV }_{2}\text{ O }_{8}\) as rechargeable cathodes in lithium cells J. Power Sources 24 85

    Article  CAS  Google Scholar 

  25. Amdouni N, Zarrouk H, Soulette F and Julien C M 2003 Synthesis, structure and lithium intercalation reaction in \(\text{ LiMoVO }_{6}\) brannerite-type materials J. Mater. Chem. 13 2374

    Article  CAS  Google Scholar 

  26. Anji Reddy M, Satya Kishore M, Pralong V, Caignaert V, Varadaraju U V and Raveau B 2007 Electrochemical performance of \(\text{ VoMoO }_{4}\) as negative electrode material for Li ion batteries J. Power Sources 168 509

    Article  Google Scholar 

  27. Wang X, Heier K R, Stern C L and Poeppelmeier K R 1998 Crystal structure and raman spectroscopy of \(\text{ FeVMoO }_{7}\) and \(\text{ CrVMoO }_{7}\) with Mo=O double bonds Inorg. Chem. 37 3252

    CAS  Google Scholar 

  28. Masquelier C, Padhi A K, Najundaswamy K S and Goodenough J B 1998 New cathode materials for rechargeable lithium batteries: The 3D framework structures \(\text{ Li }_{3}\text{ Fe }_{2}(\text{ XO }_{4})_{3}\)(X=P, As) J. Solid State Chem. 135 228

    Article  CAS  Google Scholar 

  29. Nadiri A, Delmas C, Salmon R and Hagenmuller P 1984 Chemical and electrochemical alkali metal intercalation in the 3D-framework of \(\text{ Fe }_{2}(\text{ MoO }_{4})_{3 }\) Rev. Chim. Miner. 21 537

    CAS  Google Scholar 

  30. Padhi A K, Nanjundaswamy K S, Masquelier C, Okada S and Goodenough J B 1997 Effect of structure on the \(\text{ Fe }^{3+}/\text{ Fe }^{2+}\) redox couple in iron phosphates J. Electrochem. Soc. 144 1609

    Article  CAS  Google Scholar 

  31. Manthiram A and Goodenough J B 1989 Lithium insertion into \(\text{ Fe }_{2}(\text{ SO }_{4})_{3}\) frameworks J. Power Sources 26 403

    Article  CAS  Google Scholar 

  32. Prabaharan S R S, Michael M S, Ramesh S and Begam K M 2004 Synthesis and redox properties of \(\text{ Li }_{x}\text{ Ni }_{2}(\text{ MoO }_{4})_{3}\): A new 3-V class positive electrode material for rechargeable lithium batteries J. Electroanal. Chem. 570 107

    Article  CAS  Google Scholar 

  33. Guyomard D, Sigala C, Salle A G L and Piffard Y 1997 New amorphous oxides as high capacity negative electrodes for lithium batteries: the \(\text{ LixMVO }_{4 }\)(M=Ni,Co,Cd,Zn;\(1<x\le 8\) series) J. Power Sources 68 692

    Article  CAS  Google Scholar 

  34. Rossignol C, Gouvrad G and Baudrin E 2001 X-ray absorption spectroscopy study of the structural and electronic changes upon cycling of \(\text{ LiNiVO }_{4}\) as a battery electrode J. Electrochem. Soc. 148 A869

    Article  CAS  Google Scholar 

  35. Laruelle S, Poizot P, Baudrin E, Briois V, Touboul M and Tarascon J M 2001 X-ray absorption study of cobalt vanadates during cycling usable as negative electrode in lithium battery J. Power Sources 97–98 251

    Article  Google Scholar 

  36. Kim S, Ogura S, Ikuta H, Uchimoto Y and Wakihara M 2002 Reaction mechanisms of \(\text{ MnMoO }_{4}\) for high capacity anode material of Li secondary battery Solid State Ionics 146 249

    Article  CAS  Google Scholar 

  37. Manickam M, Minato K and Takata M 2003 Effect of trivalent catión on the niobium redox couple in various transition metal phosphates J. Electrochem. Soc. 150 A1085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere thanks and deep gratitude to my research supervisor Prof. U. V. Varadaraju for his useful suggestions rendered during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Saritha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saritha, D. Electrochemical study of two structurally related compounds \(\hbox {FeVMoO}_{7}\) and \(\hbox {CrVMoO}_{7 }\) synthesized by sol–gel method. J Chem Sci 130, 7 (2018). https://doi.org/10.1007/s12039-017-1407-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-017-1407-y

Keywords

Navigation