Skip to main content
Log in

Lithium intercalation in α′-NayV2O5 synthesized via the hydrothermal route

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Vanadium bronzes NayV2O5 are synthesized via the hydrothermal route from a mixture of V2O5 and NaOH in the presence of a reducing agent. Fine crystalline powders made of needle-like particles are obtained that exhibit the layered structure typical of the α′-NayV2O5 phase (y≈1). Electron delocalization arises from a hopping process of unpaired electrons between V4+ and V5+. Alkaline cations are intercalated between the oxide layers and discharge curves show that up to one Li+ ion per vanadium can be reversibly inserted between the [V2O5] layers in the 3.3–0.5 V range. Chemical diffusion coefficient of Li ions in LixNaV2O5 is found to be dependent on the degree of intercalation. D+ varies from 1×10−10 up to 5×10−10 cm2/s for 0≤×≤2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hagenmuller, Prog. Solid State Chem.5, 71 (1971).

    Article  CAS  Google Scholar 

  2. M. Isobe, Y. Ueda, J. Phys. Soc. Jpn.65, 1178 (1996).

    CAS  Google Scholar 

  3. M. Weiden, R. Hauptmann, C. Geidel, F. Steglich, M. Fischer, P. Lemmens, G. Güntherodt, Z. Phys.B103, 1 (1997).

    Article  CAS  Google Scholar 

  4. Y. Fujii, H. Nakao, T. Yosihama, M. Nishi, K. Nakajima, K. Kakurai, M. Isobe, Y. Ueda, H. Sawa, H. J. Phys. Soc. Jpn.66, 326 (1997).

    CAS  Google Scholar 

  5. T. Yosihama, M. Nishi, K. Nakajima, K. Kakurai, Y. Fujii, M. Isobe, Y. Ueda, Physica B234–236, 539 (1997).

    Google Scholar 

  6. J. Galy, A. Casalot, M. Pouchard, P. Hagenmuller, C.R. Acad. Sc. ParisC262, 1055 (1966).

    Google Scholar 

  7. A. Carpy, J. Galy, Acta Cryst. B31, 1481 (1975).

    Article  Google Scholar 

  8. T. Ohama, M. Isobe, H. Yasuoka, Y. Ueda, J. Phys. Soc. Jpn.66, 545 (1997).

    CAS  Google Scholar 

  9. D. Augier, D. Poilblanc, S. Haas, A. Delia, E. Dagotto, Phys. Rev. B56, 5732 (1997).

    Article  Google Scholar 

  10. T. Takahashi, K. Kuwabara, Y. Abe, Solid State Ionics2, 139 (1981).

    Article  CAS  Google Scholar 

  11. D. Ballivet-Tkachenko, G. Delahay, J.L. Parize, J.M. Savariault, J. Galy, Chem. Mater.5, 1157 (1993).

    Google Scholar 

  12. M. Pouchard, A. Casalot, J. Galy, P. Hagenmuller, Bull. Soc. Chim. Fr.11, 4343 (1967).

    Google Scholar 

  13. J.L. Parize, A. Medouar, J.M. Savariault, D. Ballivet-Tkatchenko, J. Galy, Mat. Res. Bull.24, 1147 (1989).

    CAS  Google Scholar 

  14. Soft Chemistry Routes to New Materials, Mater. Sci. Forum152–153 (1994).

  15. M.S. Whittingham, Current Opinion in Solid State and Materials Science1, 227 (1996).

    Article  CAS  Google Scholar 

  16. S. Bach, N. Baffier, J.P. Pereira-Ramos, R. Messina, Solid State Ionics37, 41 (1989).

    Article  CAS  Google Scholar 

  17. M.S. Whittingham, J. Guo, R. Chen, T. Chirayil, G. Janauer, P. Zavalij, Solid State Ionics75, 257 (1995).

    Article  CAS  Google Scholar 

  18. J. Livage, L. Bouhedja, C. Bonhomme, M. Henry, Mat. Res. Soc. Symp. Proc.457, 13 (1997).

    CAS  Google Scholar 

  19. I.B. Patrina, V.A. Ioffe, Soviet Physics Solid State6, 2581 (1965).

    Google Scholar 

  20. V.A. Ioffe, I.B. Patrina, Soviet Physics Solid State10, 639 (1968).

    Google Scholar 

  21. K. Ogawa, M. Onoda, H. Nagasawa, J. Phys. Soc. Jpn.55, 2129 (1986).

    Article  CAS  Google Scholar 

  22. A.S. Nagelberg, W.L. Worrell, J. Solid State Chem.38, 321 (1981).

    Article  CAS  Google Scholar 

  23. W. Weppner, R.A. Huggins, J. Electrochem. Soc.124, 1569 (1977).

    CAS  Google Scholar 

  24. S. Bach, J.P. Pereira-Ramos, N. Baffier, R. Messina, J. Electrochem. Soc.135, 1042 (1990).

    Google Scholar 

  25. K. West, B. Zachau-Christiansen, T. Jacobsen, S. Skaarup, Mater. Res. Soc. Symp. Proc.210, 449 (1991).

    CAS  Google Scholar 

  26. B. Yebka, C. Julien, Solid State Ionics90, 141 (1996).

    Article  CAS  Google Scholar 

  27. L. Abello, E. Husson, Y. Repelin, G. Lucazeau, Spectrochim. Acta39A, 641 (1983).

    CAS  Google Scholar 

  28. P. Tarte, J. Preudhomme, Spectrochim. Acta26A, 747 (1970).

    Google Scholar 

  29. A. Rougier, G.A. Nazri, C. Julien, Ionics3, 170 (1997).

    Article  CAS  Google Scholar 

  30. C. Julien, M. Massot, C. Perez-Vicente, E. Haro-Poniatowski, G.A. Nazri, A. Rougier, Mater. Res. Soc. Symp. Proc.496, 415 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouhedja, L., Castro-Garcia, S., Livage, J. et al. Lithium intercalation in α′-NayV2O5 synthesized via the hydrothermal route. Ionics 4, 227–233 (1998). https://doi.org/10.1007/BF02375950

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375950

Keywords

Navigation