Skip to main content
Log in

Thermodynamics of association of water soluble fullerene derivatives [\(\hbox {C}_{60}\hbox {(OH)}_{\mathrm{n}}\), n = 0, 2, 4, 8 and 12] in aqueous media

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The thermodynamics of association of fullerene [\(\hbox {C}_{60}\)] and water-soluble fullerene derivatives, i.e.,  fullerols [\(\hbox {C}_{60}\hbox {(OH)}_{\mathrm{n}}\), where, n = 2, 4, 8, 12] in aqueous solutions have been studied using molecular dynamics simulations. The potentials of mean force (PMFs) bring out the tendency of aggregation of these nanostructures in water. The extent of hydroxylation seems to have a minor effect on the depth of the contact minima (the first minimum in the PMFs). The positions of the subsequent minima and maxima in the PMFs change with the size of the solute molecules. Higher stability of the contact state of highly hydroxylated fullerols is due to the van der Waals interactions whereas intermolecular solute-solvent hydrogen bonding nearly flattens the PMFs beyond the \(2{\mathrm{nd}}\) minima for higher fullerols. The solvent contributions to the PMFs for all the solute particles studied here are positive. Entropic and enthalpic contributions to the association of solute molecules are calculated in the isothermal-isobaric (NPT) ensemble. We find that the contact pair formation is governed by entropy with the enthalpic contributions being highly unfavorable, whereas the solvent assisted and solvent separated configurations show entropy-enthalpy compensation.

Graphical Abstract:

Synopsis: Aqueous solutions of fullerene have found applications in molecular sensing devices, biochemistry and environmental science. Therefore, it is necessary to have a microscopic understanding of the solvation structure of such macromolecules. Association and dynamics of fullerene and fullerols [\(\hbox {C}_{60}\hbox {(OH)}_{\mathrm{n}}\)] in water are addressed by molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruoff R S, Malhotra R, Huestis D L, Tse D S and Lorents D C 1993 Anomalous solubility behavior of \(\text{C}_{60}\) Nature  362

  2. Mchedlov-Petrossyan N O, Klochkov V K and Andrievsky G V 1997 Colloidal dispersions of fullerene \(\text{ C }_{60}\) in water: Some properties and regularities of coagulation by electrolytes J. Chem. Soc. Faraday Trans.  93 4343

    Article  CAS  Google Scholar 

  3. Mchedlov-Petrossyan N O, Klochkov V K, Andrievsky G V and Ishchenko A A 2001 Interaction between colloidal particles of \(\text{ C }_{60}\) hydrosol and cationic dyes Chem. Phys. Lett.  341 237

    CAS  Google Scholar 

  4. Scharff P, Risch K, Carta-Abelmann L, Dmytruk I M, Bilyi M M, Golub O A, Khavryuchenko A V, Buzaneva E V, Aksenov V L, Avdeev M V, Prylutskyy Y I and Durov S S 2004 Structure of \(\text{ C }_{60}\) fullerene in water: Spectroscopic data Carbon 42 1203

    Article  CAS  Google Scholar 

  5. Rivelino R, Maniero A M, Prudente F V and Costa L S 2006 Theoretical calculations of the structure and UV–Vis absorption spectra of hydrated \(\text{ C }_{60}\) fullerene Carbon  44 2925

    Article  CAS  Google Scholar 

  6. Rivelino R and Mota Fde B 2007 Band gap and density of states of the hydrated \(\text{ C }_{60}\) fullerene system at finite temperature Nano Lett. 7 1526

    Article  CAS  Google Scholar 

  7. Maciel C, Fileti E E and Rivelino R 2009 Note on the free energy of transfer of fullerene \(\text{ C }_{60}\) simulated by using classical potentials J. Phys. Chem. B 113 7045

    Article  CAS  Google Scholar 

  8. Szymanska I, Radecka H, Radecki J and Kikut-Ligaj D 2001 Fullerene modified supported lipid membrane as sensitive element of sensor for odorants Biosens. Bioelectron.  16 911

    Article  CAS  Google Scholar 

  9. Wu X, Yang S T, Wang H, Wang L, Hu W, Cao A and Liu Y 2010 Influences of the size and hydroxyl number of fullerenes/fullerenols on their interactions with proteins J. Nanosci. Nanotechnol.  10 6298

    Article  CAS  Google Scholar 

  10. Sayes C M, Fortner J D, Guo W, Lyon D, Boyd A M, Ausman K D, Tao Y J, Sitharaman B, Wilson L J, Hughes J B, West J L and Colvin V L 2004 The differential cytotoxicity of water-soluble fullerenes Nano Lett.  4 1881

    Article  CAS  Google Scholar 

  11. Chae S R, Hotze E M and Wiesner M R 2009 Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-\(\text{ C }_{60}\) fullerene aggregates Environ. Sci. Technol.  43 6208

    Article  CAS  Google Scholar 

  12. Sijbesma R, Srdanov G, Wudl F, Castoro J A, Wilkins C, Friedman S H, DeCamp D L and Kenyon G L 1993 Synthesis of a fullerene derivative for the inhibition of HIV enzymes J. Am. Chem. Soc. 115 6510

    Article  CAS  Google Scholar 

  13. Friedman S H, DeCamp D L, Sijbesma R P, Srdanov G, Wudl F and Kenyon G L 1993 Inhibition of the HIV- 1 protease by fullerene derivatives: Model building studies and experimental verification J. Am. Chem. Soc. 115 6506

    Article  CAS  Google Scholar 

  14. Tokuyama H, Yamago S and Nakamura E 1993 Photo induced biochemical activity of fullerene carboxylic acid J. Am. Chem. Soc. 115 7918

    Article  CAS  Google Scholar 

  15. Nakamura E and Isobe H 2003 Functionalized fullerenes in water. The first 10 years of their chemistry, biology and nanoscience Acc. Chem. Res. 36 807

    Article  CAS  Google Scholar 

  16. Tegos G P, Demidova T N, Arcila-Lopez D, Lee H, Wharton T, Gali H and Hamblin M R 2005 Cationic fullerenes are effective and selective antimicrobial photosensitizers Chem. Biol.  12 1127

    Article  CAS  Google Scholar 

  17. Talukdar S, Pradhan P and Banerji A 1997 Electron donor-acceptor interactions of \(\text{ C }_{60}\) with n- and pi donors: A rational approach towards its solubility Fuller. Sci. Technol.  5 547

    Article  CAS  Google Scholar 

  18. Chen Z, Mao R and Liu Y 2012 Fullerenes for cancer diagnosis and therapy: Preparation, biological and clinical perspectives Curr. Drug Metab.  13 1035

    Article  CAS  Google Scholar 

  19. Hummelen J C, Knight B W, LePeq F, Wudl F, Yao J and Wilkins C L 1995 Preparation and characterization of fulleroid and methanofullerene derivatives J. Org. Chem.  60 532

    Article  CAS  Google Scholar 

  20. Guldi D M and Asmus K D 1999 Activity of water-soluble fullerenes towards OH-radicals and molecular oxygen Radiat. Phys. Chem.  56 449

    Article  CAS  Google Scholar 

  21. Boltalina O V, Popov A A, Kuvychko I V, Shustova N B and Strauss S H 2015 Perfluoroalkylfullerenes Chem. Rev.  115 1051

    Article  CAS  Google Scholar 

  22. Prylutskyy Y I, Petrenko V I, Ivankov O I, Kyzyma O A, Bulavin L A, Litsis O O, Evstigneev M P, Cherepanov V V, Naumovets A G and Ritter U 2014 On the origin of \(\text{ C }_{60}\) fullerene solubility in aqueous solution Langmuir  30 3967

    Article  CAS  Google Scholar 

  23. Chiang L Y, Wang L Y, Swirczewski J W, Soled S and Cameron S 1994 Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors J. Org. Chem.  59 3960

    Article  CAS  Google Scholar 

  24. Wang S, He P, Zhang J –M, Jiang H and Zhu S –Z 2005 Novel and efficient synthesis of water-soluble [60] fullerenol by solvent-free reaction Synth. Commun.  35 1803

    Article  CAS  Google Scholar 

  25. Li J, Takeuchi A, Ozawa M, Li X, Saigo K and Kitazawa K 1993 \(\text{ C }_{60}\) fullerol formation catalysed by quaternary ammonium hydroxides J. Chem. Soc. Chem. Commun. 1784

  26. Pickering K D and Wiesner M R 2005 Fullerol-sensitized production of reactive oxygen species in aqueous solution Environ. Sci. Technol. 39 1359

    Article  CAS  Google Scholar 

  27. Xing G, Zhang J, Zhao Y, Tang J, Zhang B, Gao X, Yuan H, Qu L, Cao W, Chai Z, Ibrahim K and Su R 2004 Influences of structural properties on stability of fullerenols J. Phys. Chem. B  108 11473

    Article  CAS  Google Scholar 

  28. Langa, F and Nierengarten J F 2007 Fullerenes Principles and Applications (The Royal Society of Chemistry: Cambridge)

    Book  Google Scholar 

  29. Kokubo K, Matsubayashi K, Tategaki H, Takada H and Oshima T 2008 Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups ACS Nano  2 327

    Article  CAS  Google Scholar 

  30. Fileti E E, Rivelino R, F de Brito Mota and Malaspina T 2008 Effects of hydroxyl group distribution on the reactivity, stability and optical properties of fullerenols Nanotechnology  19 365703

    Article  CAS  Google Scholar 

  31. Keshri S and Tembe B L 2017 Thermodynamics of hydration of fullerols [\(\text{ C }_{60}\text{(OH) }_{{\rm n}}\)] and hydrogen bond dynamics in their hydration shells J. Chem. Phys.  146 074501

    Article  CAS  Google Scholar 

  32. Labille J, Masion A, Ziarelli F, Rose J, Brant J, Villiéras F, Pelletier M, Borschneck D, Wiesner M R and Bottero J Y 2009 Hydration and dispersion of \(\text{ C }_{60}\) in aqueous systems: The nature of water-fullerene interactions Langmuir  25 11232

    Article  CAS  Google Scholar 

  33. Chiang L Y, Lu F J and L J T 1995 Free radical scavenging activity of water-soluble fullerenols J. Chem. Soc., Chem. Commun.  12 1283

    Article  Google Scholar 

  34. Dugan L L, Gabrielsen J K, Yu S P, Lin T S and Choi D W 1996 Buckminster fullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons Neurobiol. Dis.  3 129

    Article  CAS  Google Scholar 

  35. Bogdanovic V, Stankov K, Icević I, Zikic D, Nikolić A, Solajic S, Djordjevic A and Bogdanovic G 2008 Fullerenol \(\text{ C }_{60}\text{(OH) }_{24}\) effects on ant oxidative enzymes activity in irradiated human erythroleukemia cell line J. Radiat. Res. 49 321

    Article  CAS  Google Scholar 

  36. Djordjevic A, Canadanovic-Brunet J M, Vojinovic-Miloradov M and Bogdanovic G 2004 Antioxidant properties and hypothetic radical mechanism of fullerenol \(\text{ C }_{60}\text{(OH) }_{24}\) Oxid. Commun.  27 806

    CAS  Google Scholar 

  37. Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamana S and Oshima T 2009 Antimicrobial activity of fullerenes and their hydroxylated derivatives Biocont. Sci. 14 69

    Article  CAS  Google Scholar 

  38. Chaudhuri P, Paraskar A, Soni S, Mashelkar R A and Sengupta S 2009 Fullerenol cytotoxic conjugates for cancer chemotherapy ACS Nano  3 2505

    Article  CAS  Google Scholar 

  39. Krishna V, Singh A, Sharma P, Iwakuma N, Wang Q, Zhang Q, Knapik J, Jiang H, Grobmyer S R, Koopman B and Moudgil B 2010 Polyhydroxy fullerenes for non-invasive cancer imaging and therapy Small  6 2236

    Article  CAS  Google Scholar 

  40. Brown S B, Brown E A and Walker I 2004 The present and future role of photodynamic therapy in cancer treatment Lancet. Oncol.  5 497

    Article  CAS  Google Scholar 

  41. Ken K 2012 Intech Europe A A Hashim (Ed.) ISBN 978-953-51-0615-9, 317

  42. Cao T, Yang S, Yang Y, Huang C and Cao W 2001 Photoelectric conversion property of covalent-attached multilayer self-assembled films fabricated from diazoresin and fullerol Langmuir  17 6034

    Article  CAS  Google Scholar 

  43. Rincon M E, Zdanowicz T, Rodziewicz T and Zabkowska-Waclawek M 2005 Molecular films based on polythiophene and fullerol: Theoretical and experimental studies Sol. Energy Mater. Sol. Cells.  87 33

    Article  CAS  Google Scholar 

  44. Hinokuma K and Ata M 2001 Fullerene proton conductors Chem. Phys. Lett.  341 442

    Article  CAS  Google Scholar 

  45. Maruyama R, Shiraishi M, Hinokuma K, Yamada A and Ata M 2002 Electrolysis of water vapor using a fullerene-based electrolyte Electrochem. Solid-State Lett.  5 A74

    Article  CAS  Google Scholar 

  46. Li L, Bedrov D and Smith G D 2005 A molecular dynamics simulation study of solvent-induced repulsion between \(\text{ C }_{60 }\) fullerenes in water J. Chem. Phys. 123 204504

    Article  CAS  Google Scholar 

  47. Li L, Bedrov D and Smith G D 2005 Repulsive solvent-induced interaction between \(\text{ C }_{60}\) fullerenes in water Phys. Rev. E  71 011502

    Article  CAS  Google Scholar 

  48. Walther J H, Jaffe R L, Kotsalis E M, Werder T, Halicioglu T and Koumoutsakos P 2004 Hydrophobic hydration of \(\text{ C }_{60}\) and carbon nanotubes in water Carbon  42 1185

    Article  CAS  Google Scholar 

  49. Hotta T, Kimura A and Sasai M 2005 Fluctuating hydration structure around nanometer-size hydrophobic solutes. I. Caging and drying around \(\text{ C }_{60}\) and \(\text{ C }_{60}\text{ H }_{60}\) spheres J. Phys. Chem. B  109 18600

    Article  CAS  Google Scholar 

  50. Choudhury N 2006 A Molecular Dynamics simulation study of buckyballs in water: Atomistic versus coarse-grained models of C(60) J. Chem. Phys.  125 034502

    Article  CAS  Google Scholar 

  51. Choudhury N 2007 Dynamics of water in solvation shells and intersolute regions of \(\text{ C }_{60}\): A molecular dynamics simulation study J. Phys. Chem. C  111 2565

    Article  CAS  Google Scholar 

  52. Choudhury N 2007 Dynamics of water in hydration shells of \(\text{ C }_{60}\): Molecular dynamics simulations using a coarse grain model J. Phys. Chem. B  111 10474

    Article  CAS  Google Scholar 

  53. Makowski M, Czaplewski C, Liwo A and Scheraga H A 2010 Potential of mean force of association of large hydrophobic particles: Toward the nanoscale limit J. Phys. Chem. B  114 993

    Article  CAS  Google Scholar 

  54. Colherinhas G, Fonseca T L and Fileti E E 2011 Theoretical analysis of the hydration of \(\text{ C }_{60}\) in normal and supercritical conditions Carbon  49 187

    Article  CAS  Google Scholar 

  55. Chaban V V, Maciel C and Fileti E E 2014 Solvent polarity considerations are unable to describe fullerene solvation behaviour J. Phys. Chem. B  118 3378

    Article  CAS  Google Scholar 

  56. Chaban V V, Maciel C and Fileti E E 2014 Does the like dissolves like rule hold for fullerene and ionic liquids? J. Solution Chem.  43 1019

    Article  CAS  Google Scholar 

  57. Varanasi S R, Guskova O A, John A and Sommer J –V 2015 Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration J. Chem. Phys.  142 224308

    Article  CAS  Google Scholar 

  58. Choi J I, Snow S D, Kim J –H and Jang S S 2015 Interaction of \(\text{ C }_{60}\) with water: First-principles modeling and environmental implications Environ. Sci. Technol.  49 1529

    Article  CAS  Google Scholar 

  59. Weiss D R, Raschke T M and Levitt M 2008 How hydrophobic buckminsterfullerene affects surrounding water structure J. Phys. Chem. B  112 2981

    Article  CAS  Google Scholar 

  60. Banerjee S 2013 Molecular dynamics study of self-agglomeration of charged fullerenes in solvents J. Chem. Phys. 138 044318

    Article  CAS  Google Scholar 

  61. Wang C I, Hua C C and Chen S A 2014 Dynamic solvation shell and solubility of \(\text{ C }_{60}\) in organic solvents J. Phys. Chem. B  118 9964

    Article  CAS  Google Scholar 

  62. Fritsch S, Junghans C and Kremer K 2012 Structure formation of toluene around \(\text{ C }_{60}\): Implementation of the adaptive resolution scheme (AdResS) into GROMACS J. Chem. Theory Comput.  8 398

    Article  CAS  Google Scholar 

  63. Rana M K and Chandra A 2012 Solvation of fullerene and fulleride ion in liquid ammonia: Structure and dynamics of the solvation shells J. Chem. Phys.  137 134501

    Article  CAS  Google Scholar 

  64. Guskova O A, Varanasi S R and Sommer J U 2014 \(\text{ C }_{60}\)-Dyad aggregates: Self-organized structures in aqueous solutions J. Chem. Phys.  141 144303

    Article  CAS  Google Scholar 

  65. Monticelli L 2012 On Atomistic and coarse-grained models for \(\text{ C }_{60}\) fullerene J. Chem. Theory Comput. 8 1370

    Article  CAS  Google Scholar 

  66. Redmill P S, Capps S L, Cummings P T and McCabe C 2009 A molecular dynamics study of the gibbs free energy of solvation of fullerene particles in octanol and water Carbon  47 2865

    Article  CAS  Google Scholar 

  67. Zangi R 2014 Are buckyballs hydrophobic? J. Phys. Chem. B  118 12263

    Article  CAS  Google Scholar 

  68. Garcia G, Atilhan M and Aparicio S 2014 Theoretical study on the solvation of \(\text{ C }_{60}\) fullerene by ionic liquids J. Phys. Chem. B  118 11330

    Article  CAS  Google Scholar 

  69. Cao Z, Peng Y, Li S, Liu L and Yan T 2009 Molecular dynamics simulation of fullerene \(\text{ C }_{60}\) in ethanol solution J. Phys. Chem. C  113 3096

    Article  CAS  Google Scholar 

  70. Mchedlov-Petrossyan N O 2013 Fullerenes in liquid media: An unsettling intrusion into the solution chemistry Chem. Rev.  113 5149

    Article  CAS  Google Scholar 

  71. Bezmelnitsyn V N, Eletskii A V, Okun M V and Stepanov E V 1996 Diffusion of aggregated fullerenes in solution Phys. Scr. 53 364

    Article  CAS  Google Scholar 

  72. Bezmelnitsin V N, Eletskii A V and Stepanov E V 1994 Cluster origin of fullerene solubility J. Phys. Chem.  98 6665

    Article  CAS  Google Scholar 

  73. Ruoff R S, Tse D S, Malhotra R and Lorents D C 1993 Solubility of \(\text{ C }_{60}\) in a variety of solvents J. Phys. Chem.  97 3379

    Article  CAS  Google Scholar 

  74. Korobov M, Mirakyan A L, Avramenko N V, Olofsson G, Smith A L and Ruoff R S 1999 Calorimetric studies of solvates of \(\text{ C }_{60}\) and \(\text{ C }_{70}\) with aromatic solvents J. Phys. Chem. B  103 1339

    Article  CAS  Google Scholar 

  75. Rodríguez-Zavala J G and Guirado-López R A 2004 Structure and energetics of polyhydroxylated carbon fullerenes Phys. Rev. B: Condens. Matter Mater. Phys.  69 075411

    Article  CAS  Google Scholar 

  76. Rodríguez-Zavala J G and Guirado-López R A 2006 Stability of highly OH-covered C60 fullerenes: Role of coadsorbed O impurities and of the charge state of the cage in the formation of carbon-opened structures J. Phys. Chem. A  110 9459

    Article  CAS  Google Scholar 

  77. He H, Zheng L, Jin P and Yang M 2011 The structural stability of polyhydroxylated \(\text{ C }_{60}\text{(OH) }_{24}\): Density functional theory characterizations Comput. Theor. Chem.  974 16

    Article  CAS  Google Scholar 

  78. Rivelino R, Malaspina T and Fileti E E 2009 Structure, stability, depolarized light scattering, and vibrational spectra of fullerenols from all-electron density-functional theory calculations Phys. Rev. A  79 013201

    Article  CAS  Google Scholar 

  79. Deng Q, Heine T, Irle S and Popov A A 2016 Self-assembly of endohedral metallofullerene: A decisive role of cooling gas and metal-carbon bonding Nanoscale  8 3796

    Article  CAS  Google Scholar 

  80. Yamada M, Akasaka T and Nagase S 2013 Carbene addition to fullerenes Chem. Rev.  113 7209

    Article  CAS  Google Scholar 

  81. Rodríguez-Zavala J G, Tenorio F J, Samaniego S, Méndez-Barrientos C I, Peña-Lecona F G, Muñoz-Maciel J and Flores-Moreno R 2011 theoretical study on the sequential hydroxylation of \(\text{ C }_{82}\) fullerene based on Fukui function Mol. Phys.  109 1771

    Article  CAS  Google Scholar 

  82. Li X –J, Yang X –H, Song L –M, Ren H –J and Tao T –Z 2013 A DFT study on structure, stability, and optical property of fullerenols Struct. Chem.  24 1185

    Article  CAS  Google Scholar 

  83. Wang Z, Chang X, Lu Z, Gu M, Zhao Y and Gao X 2014 A precision structural model for fullerenols Chem. Sci.  5 2940

    Article  CAS  Google Scholar 

  84. Chaban V V and Fileti E E 2017 Which fullerenols are water soluble? Systematic atomistic investigation New J. Chem.  41 184

    Article  CAS  Google Scholar 

  85. Piątek A, Dawid A and Gburski Z 2011 The properties of small fullerenol cluster (\(\text{ C }_{60}\text{(OH) }_{24})_{7}\): computer simulation Spectrochim. Acta Part A  79 819

    Article  CAS  Google Scholar 

  86. Fileti E E and Rivelino R 2009 The \(^{13}\)C NMR properties of low hydroxylated fullerenes with density functional theory Chem. Phys. Lett.  467 339

    Article  CAS  Google Scholar 

  87. Maciel C, Fileti E E and Rivelino R 2011 Assessing the solvation mechanism of \(\text{ C }_{60}\text{(OH) }_{24}\) in aqueous solution Chem. Phys. Lett. 507 244

    Article  CAS  Google Scholar 

  88. Dawid A, Górny K and Gburski Z 2011 The structural studies of fullerenol \(\text{ C }_{60}\text{(OH) }_{24}\) and nitric oxide mixture in water solvent—MD simulation Nitric Oxide  25 373

    Article  CAS  Google Scholar 

  89. Martínez L, Andrade R, Birgin E G and Martínez J M 2009 Packmol: A package for building initial configurations for molecular dynamics simulations J. Comput. Chem.  30 2157

    Article  CAS  Google Scholar 

  90. Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 GROMACS 4: Algorithms for highly efficient, load - balanced, and scalable molecular simulation J. Chem. Theory Comput.  4 435

    Article  CAS  Google Scholar 

  91. Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 Comparison of simple potential functions for simulating liquid water J. Chem. Phys.  79 926

    Article  CAS  Google Scholar 

  92. Oostenbrink C, Villa A, Mark A E and van Gunsteren W 2004 A Biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6 J. Comput. Chem.  25 1656

    Article  CAS  Google Scholar 

  93. Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 LINCS: A linear constraint solver for molecular simulations J. Comput. Chem. 118 1463

    Article  Google Scholar 

  94. Allen M P and Tildesley D J 1987 Computer Simulations of Liquids (Claredon: Oxford)

    Google Scholar 

  95. Darden T, York D and Pedersen L 1993 Particle mesh Ewald: An N\(\cdot \)log(N) Method for Ewald sums in large systems J. Chem. Phys.  98 10089

    Article  CAS  Google Scholar 

  96. van Gunsteren W F and Berendsen H J C 1990 Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry Angew. Chem. Int. Ed. Engl.  29 992

    Article  Google Scholar 

  97. Bussi G, Donadio D and Parrinello M 2007 Canonical sampling through velocity rescaling J. Chem. Phys.  126 014101

    Article  CAS  Google Scholar 

  98. Berendsen H J C, Postma J P M, DiNola A and Haak J R 1984 Molecular dynamics with coupling to an external bath J. Chem. Phys.  81 3684

    Article  CAS  Google Scholar 

  99. van Gunsteren W F and Berendsen H J C 1988 A Leap-frog algorithm for stochastic dynamics Mol. Simul. 1 173

    Article  Google Scholar 

  100. Parrinello M and Rahman A 1981 Polymorphic transitions in single crystals: A new molecular dynamics method J. Appl. Phys.  52 7182

    Article  CAS  Google Scholar 

  101. Trzesniak D, Kunz A P E and van Gunsteren W 2007 A Comparison of methods to compute the potential of mean force ChemPhysChem  8 162

    Article  CAS  Google Scholar 

  102. Hess B, Holm C and van der Vegt N 2006 Osmotic coefficients for atomistic NaCl(aq) force fields J. Chem. Phys.  124 164509

    Article  CAS  Google Scholar 

  103. Neumann R M 1980 Entropic approach to brownian movement Am. J. Phys.  48 354

    Article  CAS  Google Scholar 

  104. Banerjee S, Roy S and Bagchi B 2010 Enhanced pair hydrophobicity in the water-dimethyl sulfoxide (DMSO) binary mixture at low DMSO concentrations J. Phys. Chem. B  114 12875

    Article  CAS  Google Scholar 

  105. Choudhury N and Pettitt B M 2005 On the mechanism of hydrophobic association of nanoscopic solutes J. Am. Chem. Soc.  127 3556

    Article  CAS  Google Scholar 

  106. Choudhury N and Pettitt B M 2006 Entropy-enthalpy contributions to the potential of mean force of nanoscopic hydrophobic solutes J. Phys. Chem. B  110 8459

    Article  CAS  Google Scholar 

  107. Pettitt B M and Rossky P J 1986 alkali halides in water: Ion–solvent correlations and ion–ion potentials of mean force at infinite dilution J. Chem. Phys.  84 5836

    Article  CAS  Google Scholar 

  108. Southall N T and Dill K A 2002 Potentials of mean force between two hydrophobic solutes in water Biophys. Chem.  101-102 295

    Article  Google Scholar 

  109. Garde S, Hummer G and Paulaitis M E 1996 Hydrophobic interactions: Conformational equilibria and the association of non-polar molecules in water Faraday Discuss.  103 125

    Article  CAS  Google Scholar 

  110. Head-Gordon T 1995 A new solvent model for hydrophobic association in water. 1. Thermodynamics J. Am. Chem. Soc.  117 501

    Article  CAS  Google Scholar 

  111. Lüdemann S, Schreiber H, Abseher R and Steinhauser O 1996 The influence of temperature on pairwise hydrophobic interactions of methane-like particles: A molecular dynamics study of free energy J. Chem. Phys.  104 286

    Article  Google Scholar 

  112. Shimizu S and Chan H S 2000 Temperature dependence of hydrophobic interactions: A mean force perspective, effects of water density, and nonadditivity of thermodynamics signatures J. Chem. Phys.  113 4683

    Article  CAS  Google Scholar 

  113. Shimizu S and Chan H S 2001 Configuration-dependent heat capacity of pairwise hydrophobic interactions J. Am. Chem. Soc.  123 2083

    Article  CAS  Google Scholar 

  114. Smith D E and Haymet A D J 1993 Free energy, entropy, and internal energy of hydrophobic interactions: Computer simulations J. Chem. Phys.  98 6445

    Article  CAS  Google Scholar 

  115. Dang L X 1994 Potentials of mean force for the methane-methane pair in water J. Chem. Phys.  100 9032

    Article  CAS  Google Scholar 

  116. Ghosh T and García A E and Garde S 2002 Enthalpy and entropy contributions to the pressure dependence of hydrophobic interactions J. Chem. Phys.  116 2480

    Article  CAS  Google Scholar 

  117. Lüdemann S, Abseher R, Schreiber H and Steinhauser O 1997 The temperature dependence of hydrophobic association in water. Pair versus bulk hydrophobic interactions J. Am. Chem. Soc.  119 4206

    Article  Google Scholar 

  118. Voronin D M, Buchelnikov A S, Kostjukov V V, Khrapatiy S V, Wyrzykowski D, Piosik J, Prylutskyy Y I, Ritter U and Evstigneev M P 2014 Evidence of entropically driven \(\text{ C }_{60}\) fullerene aggregation in aqueous solution J. Chem. Phys.  140 104909

    Article  CAS  Google Scholar 

  119. Fileti E E and Chaban V V 2014 Imidazolium ionic liquids help to disperse fullerenes in water J. Phys. Chem. Lett.  5 1795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank IIT Bombay and its Chemistry Department for the high-performance computational facilities. We would like to thank Atanu Sarkar for useful initial inputs to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B L Tembe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshri, S., Tembe, B.L. Thermodynamics of association of water soluble fullerene derivatives [\(\hbox {C}_{60}\hbox {(OH)}_{\mathrm{n}}\), n = 0, 2, 4, 8 and 12] in aqueous media. J Chem Sci 129, 1327–1340 (2017). https://doi.org/10.1007/s12039-017-1356-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1356-5

Keywords

Navigation