Skip to main content
Log in

Carboxylate-bridged Cu(II) coordination polymeric complex: synthesis, crystal structure, magnetic properties, DNA binding and electrochemical studies

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A novel water-soluble carboxylate-bridged copper(II) coordination polymer, Cu-BIG was formed by the reaction of \(\hbox {Cu}(\hbox {ClO}_{4})_{2}\cdot \hbox {6H}_{2}\hbox {O}\) and tridentate benzimidazole-glycine conjugate ligand, 2-((1H-benzimidazol-2-yl)methylamino) acetic acid, BIGH and its structure has been determined by IR, UV, powder XRD, VSM, CV, TGA, DTA, EPR and single crystal X-ray diffraction. Crystallographic studies indicate it to be a coordination polymer with Pī Space group. The asymmetric unit of complex contains two Cu(II) ions with elongated square pyramid geometry. The axial positions of the Cu(II) atoms are occupied by the carbonyl oxygen of the carboxylate group with the bond distances \(\hbox {Cu}(1)\)\(\hbox {O}(5)_{{axial}},\, 2.28\, {\AA }\), and \(\hbox {Cu}(2)\)\(\hbox {O}(2)_{{axial}},\, 2.26\, {\AA }\). The two Cu(II) are connected through the carboxylic group present in BIGH, which provides electron mobilisation in the molecule and hence results in the soft ferromagnetic polymer. An in vitro antibacterial activity study of BIGH and Cu-BIG showed moderate activity against Bacillus subtilis. The DNA binding studies showed the interaction of Cu-BIG with CT-DNA.

Graphical Abstract

Synopsis: A water soluble ferromagnetic carboxylate-bridged copper(II) coordination polymer, Cu-BIG was formed by the reaction of \(\hbox {Cu}(\hbox {ClO}_{4})_{2}\cdot \hbox {6H}_{2}\hbox {O}\) and tridentate benzimidazole-glycine conjugate ligand, 2-((1H-benzimidazol-2-yl)methylamino) acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qin J H, Ma L F, Hu Y and Wang L Y 2012 Syntheses, structures and photoluminescence of five zinc(II)coordination polymers based on 5-methoxyisophthalate and flexible N-donor ancillary ligands CrystEngComm 14 2891

    Article  CAS  Google Scholar 

  2. Yoon M, Srirambalaji R and Kim K 2012 Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis Chem. Rev. 112 1196

    Article  CAS  Google Scholar 

  3. Moon H R, Lim D W and Suh M P 2013 Fabrication of metal nanoparticles in metal–organic frameworks Chem. Soc. Rev. 42 1807

    Article  CAS  Google Scholar 

  4. Gai Y L, Jiang F L, Xiong K C, Chen L, Yuan D Q, Zhang L J, Zhou K and Hong M C 2012 Temperature-Dependent in Situ Reduction of 4,4_-Azobispyridine via Solvothermal Reaction Cryst. Growth Des. 12 2079

  5. Vishnoi P, Kalita A C and Murugavel R 2014 An anionic two-dimensional indium carboxylate framework derived from a pseudo \(C_{3}\)-symmetric semi-flexible tricarboxylic acid J. Chem. Sci. 126 1385

    Article  CAS  Google Scholar 

  6. Tripathi S, Srirambalaji R, Singh N and Anantharaman G 2014 Chiral and achiral helical coordination polymers of zinc and cadmium from achiral 2,6-bis(imidazol-1-yl)pyridine: Solvent effect and spontaneous resolution J. Chem. Sci. 126 1423

    Article  CAS  Google Scholar 

  7. Janiak C 2003 Engineering coordination polymers towards applications Dalton Trans. 14 2781

    Article  Google Scholar 

  8. Rogez G, Viart N and Drillon M 2010 Multiferroic materials: the attractive approach of metal–organic frameworks (MOFs) Angew. Chem. Int. Ed. 49 1921

    Article  CAS  Google Scholar 

  9. Yu L, Wang Z, Wu J, Tu S and Ding K 2010 Directed Orthogonal Self-Assembly of Homochiral Coordination Polymers for Heterogeneous Enantioselective Hydrogenation Angew. Chem. Int. Ed. 49 3627

    Article  CAS  Google Scholar 

  10. Liu B, Zhao R L, Yang G P, Hou L, Wang Y Y and Shi Q Z 2013 Two isostructural amine- unctionalized 3D self-penetrating microporous MOFs exhibiting high sorption selectivity for CO CrystEngComm 15 2057

    Article  CAS  Google Scholar 

  11. Liu Y Y, Li J, Ma J F, Ma J C and Yang J 2012 A 2 series of 1D, 2D and 3D coordination polymers based on a 5-(benzonic-4-ylmethoxy)isophthalic acid: Syntheses, structures and photoluminescence CrystEngComm 14 169

    Article  CAS  Google Scholar 

  12. Suh M P, Park H J, Prasad T K and Lim D W 2012 Hydrogen Storage in Metal–Organic Frameworks Chem. Rev. 112 782

    Article  CAS  Google Scholar 

  13. Cui Y J, Yue Y F, Qian G D and Chen B L 2012 Luminescent Functional Metal–Organic Frameworks Chem. Rev. 112 1126

    Article  CAS  Google Scholar 

  14. Zhang H M, Yang J, Liu Y Y, Kang D W and Ma J F 2015 A family of coordination polymers assembled with a flexible hexacarboxylate ligand and auxiliary N-donor ligands: Syntheses, structures, and physical properties CrystEngComm 17 3181

    Article  CAS  Google Scholar 

  15. Fan L M, Zhang X T, Sun Z, Zhang W, Ding Y S, Fan W L, Sun L M, Zhao X and Lei H 2013 Ancillary Ligands Dependent Structural Diversity of A Series of Metal–Organic Frameworks Based on 3,5-Bis(3-carboxyphenyl)pyridine Cryst. Growth Des. 13 2462

    Article  CAS  Google Scholar 

  16. Lin L, Yu R M, Yang W B, Wu X Y and Lu C Z 2012 A Series of Chiral Metal–Organic Frameworks Basedon Oxalyl Retro-Peptides: Synthesis, Characterization, Dichroism Spectra, and Gas Adsorption Cryst. Growth Des. 12 3304

    Article  CAS  Google Scholar 

  17. Cheng P C, Kuo P T, Liao Y H, Xie M Y, Hsu W and Chen J D 2013 Ligand-Isomerism Controlled Structural Diversity of Zn(II) and Cd(II) Coordination Polymers from Mixed Dipyridyladipoamide and Benzenedicarboxylate Ligands Cryst. Growth Des. 13 623

    Article  CAS  Google Scholar 

  18. Liu S J, Xue L, Hu T L and Bu X H 2012 Two new CoII coordination polymers based on carboxylate-bridged di- and trinuclear clusters with a pyridinedicarboxylate ligand: Synthesis, structures and magnetism Dalton. Trans. 41 6813

    Article  CAS  Google Scholar 

  19. Verweij P D, van der Geest J S N, Driessen W L, Reedijk J, Sherrington D C 1992 Metal uptake by a novel benzimidazole ligand immobilised ontopoly(glycidyl methacrylate-co-ethylene glycol dimethacrylate React. Polym. 18 191

    Article  CAS  Google Scholar 

  20. SAINTPLUS Software for the CCD detector System 1998 Bruker Analytical X-ray System Inc. (Madidon, WI)

  21. SADABS 1998 Emperical Absorption Correction Program (Madison, Wisconsin, USA: Bruker AXS Inc)

  22. Sheldrick G M 1997 Program for Crystal Structure Solution (Germany: University of Gottingen)

    Google Scholar 

  23. Sheldrick G M 1997 Program for Crystal Structure Refinement (Germany: University of Gottingen)

    Google Scholar 

  24. Farrugia L J 1997 ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Crystallogr. 30 565

    Article  CAS  Google Scholar 

  25. Kepert D L 1982 Inorganic Stereochemistry (Berlin: Springer-Verlag) p. 65

    Book  Google Scholar 

  26. Patra A, Sen S, Sarkar S, Zangrando E and Chattopadhyay P 2012 Syntheses, crystal structures, and DNA-binding of some nickel(II) complexes of 1,3-bis(2-pyridylmethylthio)propane and pseudohalides J. Coord. Chem. 65 4096

    Article  CAS  Google Scholar 

  27. Bimolini Devi A 2015 Synthesis, Characterization and DNA Interaction of Metal Complex of Nitrile group Ligand International J. Basic Appl. Chem. Sci. 5 25

    Google Scholar 

  28. Reichman M E, Rice S A, Tgomas C A and Doty P 1954 A further examination of the molecular weight and size of desoxypentose nucleic acid J. Am. Chem. Soc. 76 3047

    Article  Google Scholar 

  29. Patra A, Sarkar S, Mukherjee T, Zangrando E and Chattopadhyay P 2011 Zinc(II) complexes of 1,3-bis(2-pyridylmethylthio)propane: Anion dependency, crystal structure and DNA binding study Polyhedron 30 2783

    Article  CAS  Google Scholar 

  30. Stern O and Volmer M 1919 The extinction period of fluorescence Physik. Z. 20 183

    CAS  Google Scholar 

  31. Waring M J 1965 Complex formation between ethidium bromide and nucleic acids J. Mol. Biol. 13 269

    Article  CAS  Google Scholar 

  32. Changzheng I. Jigui W, Liufang W, Min R, Naiyang J and Jie G 1999 Synthesis, characterization and antitumor activity of copper(II) complex with nicotinamido-4-bis(2-chloroethyl)aminobenzaldimine J. Inorg. Biochem. 73 195

    Article  Google Scholar 

  33. Lee M, Rhodes A L, Wyatt M D, Forrow S and Hartley J A 1993 GC base sequence recognition by oligo(imidazolecarboxamide) and C-terminus-modified analogues of distamycin deduced from circular dichroism, proton nuclear magnetic resonance, and methidiumpropylethylenediaminetetraacetate-iron(II) footprinting studies Biochemistry 32 4237

  34. Zhi B O, Yu Hao L, Yan Mei L, Shi Chen, Ya Hong X and Xiao Hua Z 2013 A copper(II) complex with 2-(2\(\prime \)-pyridyl)benzimidazole and l-arginine: synthesis, structure, antibacterial activities, and DNA interaction J. Coord. Chem. 66 2152

    Article  Google Scholar 

  35. Valeska da R C and Tsuneharu O 2003 Microstructure and Hysteresis Curves of Samarium-Holmium-Iron Garnet Synthesized by Coprecipitation Mat. Res. 6 569

  36. Chao L, Rondinone A J and Zhang Z J 2000 Synthesis of magnetic spinel ferrite \(\text{ CoFe }_{2}\text{ O }_{4}\) nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties Pure Appl. Chem. 72 37

    Google Scholar 

  37. Raziyeh A A and Saeid A 2012 Synthesis, Spectroscopy, Thermal Analysis, Magnetic Properties and Biological Activity Studies of Cu(II) and Co(II) Complexes with Schiff Base Dye Ligands Molecules 17 6434

    Article  Google Scholar 

  38. Rong-kai P, Guo-bi Li, Sheng-gui Liu, Xiao-ping Z and Gui-zhen Y 2016 Synthesis, crystal structure, electrochemical property, and antioxidant activity of copper(II) complex based on 4-butyloxy-2,6-bis(1-methyl-2-benzimidazolyl)pyridine Monatsh. Chem. 147 1189

  39. Mohamed M I, Gaber A M M, Samir A E S and Abdel-Motaleb M R 2012 Synthesis, Characterization, and Electrochemical Properties of Bis(2-benzimidazolylmethyl-6-sulfonate)amine-based zinc(II), copper(II), and oxidovanadium(IV) Complexes: SOD Scavenging, DNA binding, and Anticancer Activities Int. J. Electrochem. Sci. 7 7526

    Google Scholar 

  40. Kavi Rasu K, Balaji D and Moorthy Babu S 2016 Spectroscopic properties of \(\text{ Eu }^{3+}:\text{ KLa }(\text{ WO }_{4})_{2}\) novel red phosphors J. Lumin. 170 547

    Article  Google Scholar 

  41. Souza S M, Delle–Monache F and Smânia Jr A 2005 Antibacterial Activity of Coumarins Z. Naturforsch. C 60 693

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to JNTU, Hyderabad and UGC networking resource centre, University of Hyderabad, India for providing necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Ramana Reddy Chittireddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2534 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thatituri, S., Govindugari, B. & Chittireddy, V.R.R. Carboxylate-bridged Cu(II) coordination polymeric complex: synthesis, crystal structure, magnetic properties, DNA binding and electrochemical studies. J Chem Sci 129, 1171–1181 (2017). https://doi.org/10.1007/s12039-017-1330-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1330-2

Keywords

Navigation