Skip to main content
Log in

Molecular Dynamics Investigation of Efficient SO2 Absorption by Anion-Functionalized Ionic Liquids

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Ionic liquids are appropriate candidates for the absorption of acid gases such as SO2. Six anion-functionalized ionic liquids with different basicities have been studied for SO2 absorption capacity by employing quantum chemical calculations and molecular dynamics (MD) simulations. Gas phase quantum calculations unveil that the high uptake of SO2 in these ionic liquids originates from the basicity of the anions and the consequent enhanced anion-SO2 interactions. MD simulations of SO2–IL mixtures reveal the crucial role of both cations and anions in SO2 dissolution. Multiple-site interactions of SO2 with the anions have been identified. The calculated solvation free energy substantiates these observations. The order of computed Henry’s law constant values with change in the anion is in fair agreement with experimentally determined SO2 solubility order.

Efficient absorption of SO2 by anion-functionalized ionic liquids has been studied using quantum mechanical and molecular dynamics simulation methods. Improved absorption capacity at much lower desorption cost has been found to be consequence of SO2-cation interaction via dispersion forces and multiple-site interactions of SO2 with anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Smith S J, van Aardenne J, Klimont Z, Andres R J, Volke A and Delgado A S 2011 Anthropogenic sulfur dioxide emissions: 1850–2005 Atmos. Chem. Phys. 11 1101

  2. Huang J, Riisager A, Wasserscheid P and Fehrmann R 2006 Reversible physical absorption of SO2 by ionic liquids Chem. Commun. 38 4027

    Article  Google Scholar 

  3. Zheng Y, Kiil S and Johnsson J E 2003 Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation Chem. Eng. Sci. 58 4695

    Article  CAS  Google Scholar 

  4. Ma X, Kaneko T, Tashimo T, Yoshida T and Kato K 2000 Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed Chem. Eng. Sci. 55 4643

    Article  CAS  Google Scholar 

  5. Dupont J, de Souza R F and Suarez P A Z 2002 Ionic liquid (molten salt) phase organometallic catalysis Chem. Rev. 102 3667

  6. Bates E D, Mayton R D, Ntai I and Davis J H 2002 CO2 capture by a task-specific ionic liquid J. Am. Chem. Soc. 124 926

    Article  CAS  Google Scholar 

  7. Merrigan T L, Bates E D, Dorman S C and Davis J H 2000 New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids Chem. Commun. 2051

  8. Huang J-F, Luo H, Liang C, Sun I, Baker G A and Dai S 2005 Hydrophobic Brönsted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence J. Am. Chem. Soc. 127 12784

    Article  CAS  Google Scholar 

  9. Bara J E, Carlisle T K, Gabriel C J, Camper D, Finotello A, Gin D L and Noble R D 2009 Guide to CO2 separations in imidazolium-based room-temperature ionic liquids Ind. Eng. Chem. Res. 48 2739

    Article  CAS  Google Scholar 

  10. Wang C, Luo H,-e J. D, Li H and Dai S 2010 Carbon dioxide capture by superbase-derived protic ionic liquids Angew. Chem. Int. Ed. 49 5978

    Article  CAS  Google Scholar 

  11. Xiong D, Cui G, Wang J, Wang H, Li Z, Yao K and Zhang S 2015 Reversible hydrophobic-hydrophilic transition of ionic liquids driven by carbon dioxide Angew. Chem. Int. Ed. 54 7265

    Article  CAS  Google Scholar 

  12. Wu W, Han B, Gao H, Liu Z, Jiang T and Huang J 2004 Desulfurization of flue gas: SO2 absorption by an ionic liquid Angew. Chem. Int. Ed. 43 2415

    Article  CAS  Google Scholar 

  13. Anderson J L, Dixon J K, Maginn E J and Brennecke J F 2006 Measurement of SO2 solubility in ionic liquids J. Phys. Chem. B 110 15059

    Article  CAS  Google Scholar 

  14. Hong S Y, Im J, Palgunadi J, Lee S D, Lee J S, Kim H S, Cheong M and Jung K -D 2011 Ether-functionalized ionic liquids as highly efficient SO2 absorbents Energy Environ. Sci. 4 1802

    Article  CAS  Google Scholar 

  15. Prasad B R and Senapati S 2009 Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations J. Phys. Chem. B 113 4739

    Article  CAS  Google Scholar 

  16. Garcia G, Atilhan M and Aparicio S 2015 A density functional theory insight towards the rational design of ionic liquids for SO2 capture Phys. Chem. Chem. Phys. 17 13559

    Article  CAS  Google Scholar 

  17. Yuan X L, Zhang S J and Lu X M 2007 Hydroxyl ammonium ionic liquids: Synthesis, properties, and solubility of SO2 J. Chem. Eng. Data 52 1150

    Article  CAS  Google Scholar 

  18. Yokozeki A and Shiflett M B 2009 Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid [hmim][Tf2N] Energy Fuels 23 4701

    Article  CAS  Google Scholar 

  19. Shiflett M B and Yokozeki A 2010 Separation of carbon dioxide and sulfur dioxide using room-temperature ionic liquid [bmim][MeSO4] Energy Fuels 24 1001

    Article  CAS  Google Scholar 

  20. Shiflett M B and Yokozeki A 2010 Chemical absorption of sulfur dioxide in room-temperature ionic liquids Ind. Eng. Chem. Res. 49 1370

    Article  CAS  Google Scholar 

  21. Yang D, Hou M, Ning H, Ma J, Kang X, Zhang J and Han B 2013 Reversible capture of SO2 through functionalized ionic liquids ChemSusChem 6 1191

    Article  CAS  Google Scholar 

  22. Shang Y, Li H, Zhang S, Xu H, Wang Z, Zhang L and Zhang J 2011 Guanidinium-based ionic liquids for sulfur dioxide sorption Chem. Eng. J. 175 324

    CAS  Google Scholar 

  23. Jiang Y-Y, Zhou Z, Jiao Z, Li L, Wu Y-T and Zhang Z-B 2007 SO2 gas separation using supported ionic liquid membranes J. Phys. Chem. B 111 5058

    Article  CAS  Google Scholar 

  24. Luis P, Neves L, Afonso C, Coelhoso I, Crespo J, Garea A and Irabien A 2009 Facilitated transport of CO2 and SO2 through Supported ionic liquid membranes (SILMs) Desalination 245 485

    Article  CAS  Google Scholar 

  25. Hu X-B, Li Y-X, Huang K, Ma S-L, Yu H, Wu Y-T and Zhang Z-B 2012 Impact of a-d-glucose pentaacetate on the selective separation of CO2 and SO2 in supported ionic liquid membranes Green Chem. 14 1440

    Article  CAS  Google Scholar 

  26. Wang J, Zeng S, Bai L, Gao H, Zhang X and Zhang S 2014 Novel ether-functionalized pyridinium chloride ionic liquids for efficient SO2 capture Ind. Eng. Chem. Res 53 16832

    Article  CAS  Google Scholar 

  27. Zeng S, He H, Gao H, Zhang X, Wang J, Huang Y and Zhang S 2015 Improving SO2 capture by tuning functional groups on the cation of pyridinium-based ionic liquids RSC Adv. 5 2470

    Article  CAS  Google Scholar 

  28. Sun S, Niu Y, Xu Q, Sun Z and Wei X 2015 Highly efficient sulfur dioxide capture by glyme-lithium salt ionic liquids RSC Adv. 5 46564

    Article  CAS  Google Scholar 

  29. Han G-Q, Jiang Y-T, Deng D-S and Ai N 2015 Absorption of SO2 by renewable ionic liquid/polyethylene glycol binary mixture and thermodynamic analysis RSC Adv. 5 87750

    Article  CAS  Google Scholar 

  30. Yang Z-Z, He L-N, Song Q-W, Chen K-H, Liu A-H and Liu X-M 2012 Highly efficient SO2 absorption/activation and subsequent utilization by polyethylene glycol-functionalized Lewis basic ionic liquids Phys. Chem. Chem. Phys. 14 15832

    Article  CAS  Google Scholar 

  31. Wang C, Zheng J, Cui G, Luo X, Guo Y and Li H 2013 Highly efficient SO2 capture through tuning the interaction between anion-functionalized ionic liquids and SO2 Chem. Commun. 49 1166

    Article  CAS  Google Scholar 

  32. Wang C, Cui G, Luo X, Xu Y, Li H and Dai S 2011 Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption J. Am. Chem. Soc. 133 11916

    Article  CAS  Google Scholar 

  33. Huang J and Rüther T 2009 Why are ionic liquids attractive for CO2 absorption? An overview Aust. J. Chem. 62 298

    Article  CAS  Google Scholar 

  34. Wang C, Luo X, Luo H, D-e J., Li H and Dai S 2011 Tuning the basicity of ionic liquids for equimolar CO2 capture Angew. Chem. Int. Ed. 50 4918

    Article  CAS  Google Scholar 

  35. Gurkan B, Goodrich B F, Mindrup E M, Ficke L E, Massel M, Seo S, Senftle T P, Wu H, Glaser M F and Shah J K 2010 Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture J. Phys. Chem. Lett. 1 3494

    Article  CAS  Google Scholar 

  36. Wang C, Luo H, Li H, Zhu X, Yu B and Dai S 2012 Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion Chem. Eur. J. 18 2153

    Article  CAS  Google Scholar 

  37. Teague C M, Dai S and en Jiang D 2010 Computational investigation of reactive to nonreactive capture of carbon dioxide by oxygen-containing lewis bases J. Phys. Chem. A 114 11761

    Article  CAS  Google Scholar 

  38. Cui G, Wang C, Zheng J, Guo Y, Luo X and Li H 2012 Highly efficient SO2 capture by dual functionalized ionic liquids through a combination of chemical and physical absorption Chem. Commun. 48 2633

    Article  CAS  Google Scholar 

  39. Cui G, Zheng J, Luo X, Lin W, Ding F, Li H and Wang C 2013 Tuning anion-functionalized ionic liquids for improved SO2 capture Angew. Chem. Int. Ed. 52 10620

    Article  CAS  Google Scholar 

  40. Cui G, Lin W, Ding F, Luo X, He X, Li H and Wang C 2014 Highly efficient SO2 capture by phenyl-containing azole-based ionic liquids through multiple-site interactions Green Chem. 16 1211

    Article  CAS  Google Scholar 

  41. Cui G, Zhang F, Zhou X, Li H, Wang J and Wang C 2015 Tuning the basicity of cyano-containing ionic liquids to improve SO2 capture through cyano-sulfur interactions Chem. Eur. J. 21 5632

    Article  CAS  Google Scholar 

  42. Chen K, Lin W, Yu X, Luo X, Ding F, He X, Li H and Wang C 2015 Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas AIChE J. 61 2028

    Article  CAS  Google Scholar 

  43. Cui G, Huang Y, Zhang R, Zhang F and Wang J 2015 Highly efficient and reversible SO2 capture by halogenated carboxylate ionic liquids RSC Adv. 5 60975

    Article  CAS  Google Scholar 

  44. Cui G, Zhang F, Zhou X, Huang Y, Xuan X and Wang 2015 Acylamido-based anion-functionalized ionic liquids for efficient SO2 capture through multiple-site interactions ACS Sustainable Chem. Eng. 3 2264

    Article  CAS  Google Scholar 

  45. Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F and Maginn E J 2004 Why is CO2 so soluble in imidazolium-based ionic liquids J. Am. Chem. Soc. 126 5300

    Article  CAS  Google Scholar 

  46. Huang X, Margulis C J, Li Y and Berne B J 2005 Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim] [PF6] J. Am. Chem. Soc. 127 17842

    Article  CAS  Google Scholar 

  47. Bhargava B L and Balasubramania S 2007 Insights into the structure and dynamics of a room-temperature ionic liquid: Ab initio molecular dynamics simulation studies of 1-n-Butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and the [bmim][PF6]-CO2 mixture J. Phys. Chem. B 111 4477

    Article  CAS  Google Scholar 

  48. Shah J and Maginn E J 2005 Monte carlo simulations of gas solubility in the ionic liquid 1-n-Butyl-3-methylimidazolium hexafluorophosphate J. Phys. Chem. B 109 10395

    Article  CAS  Google Scholar 

  49. Wang Y, Pan H, Li H and Wang C 2007 Force field of the TMGL ionic liquid and the solubility of SO2 and CO2 in the TMGL from molecular dynamics simulation J. Phys. Chem. B 111 10461

    Article  CAS  Google Scholar 

  50. Bhargava B L, Krishna A C and Balasubramanian S 2008 Molecular dynamics simulation studies of CO2-[bmim][PF6] solutions: Effect of CO2 concentration AIChE J. 54 2971

    Article  CAS  Google Scholar 

  51. Zhang X, Huo F, Liu Z, Wang W, Shi W and Maginn E J 2009 Absorption of CO2 in the ionic liquid 1-n-Hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): A molecular view by computer simulations J. Phys. Chem. B 113 7591

    Article  CAS  Google Scholar 

  52. Zhang X, Liu X, Yao X and Zhang S 2011 Microscopic structure, interaction, and properties of a guanidinium-based ionic liquid and its mixture with CO2 Ind. Eng. Chem. Res. 50 8323

    Article  CAS  Google Scholar 

  53. Monteiro M J, Ando R A, Siqueira L J A, Camilo F F, Santos P S, Ribeiro M C C and Torresi R M 2011 Effect of SO2 on the transport properties of an imidazolium ionic liquid and its lithium solution J. Phys. Chem. B 115 9662

    Article  CAS  Google Scholar 

  54. Yu G and Chen X 2011 SO2 Capture by guanidinium-based ionic liquids: A theoretical study J. Phys. Chem. B 115 3466

    Article  CAS  Google Scholar 

  55. Ghobadi A F, Taghikhani V and Elliott J R 2011 Investigation on the solubility of SO2 and CO2 in imidazolium-based ionic liquids using NPT monte carlo simulation J. Phys. Chem. B 115 13599

    Article  CAS  Google Scholar 

  56. Mohammadi M and Foroutan M 2014 Molecular investigation of SO2 gas absorption by ionic liquids: Effects of anion type J. Mol. Liq. 193 60

    Article  CAS  Google Scholar 

  57. Firaha D, Kavalchuk M and Kirchner B 2015 SO2 solvation in the 1-ethyl-3-methylimidazolium thiocyanate ionic liquid by incorporation into the extended cation-anion network J. Solution Chem. 44 838

    Article  CAS  Google Scholar 

  58. Siqueira L J A, Ando R A, Bazito F F C, Torresi R M, Santos P S and Ribeiro M C C 2008 Shielding of ionic interactions by sulfur dioxide in an ionic liquid J. Phys. Chem. B 112 6430

    Article  CAS  Google Scholar 

  59. Wick C D, Chang T M and Dan L X 2010 Molecular mechanism of CO2 and SO2 molecules binding to the air/liquid interface of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid: A molecular dynamics study with polarizable potential models J. Phys. Chem. B 114 14965

    Article  CAS  Google Scholar 

  60. Mondal A and Balasubramanian S 2016 Understanding SO2 capture by ionic liquids J. Phys. Chem. B 120 4457

    Article  CAS  Google Scholar 

  61. Chandran A, Prakash K and Senapati S 2010 Self-Assembled inverted micelles stabilize ionic liquid domains in supercritical CO2 J. Am. Chem. Soc. 132 12511

    Article  CAS  Google Scholar 

  62. Prakash P and Venkatnathan A 2016 Molecular mechanism of CO2 absorption in phosphonium amino acid ionic liquid RSC Adv. 6 55438

    Article  CAS  Google Scholar 

  63. Perez-Blanco M E and Maginn E J 2001 Molecular dynamics simulations of CO2 at an ionic liquid interface: Adsorption, ordering, and interfacial crossing J. Phys. Chem. B 114 11827

    Article  Google Scholar 

  64. Dang L X and Chang T-M 2012 Molecular mechanism of gas adsorption into ionic liquids: A molecular dynamics study J. Phys. Chem. Lett. 3 175

    Article  CAS  Google Scholar 

  65. Morganti J D, Hoher K, Ribeiro M C C, Ando R A and Siqueira L J 2014 Molecular dynamics simulations of acidic gases at interface of quaternary ammonium ionic liquids J. Phys. Chem. C 118 22012

    Article  CAS  Google Scholar 

  66. Frisch M J et al. 2009 Gaussian 09 Revision D.01. Gaussian Inc. Wallingford CT

  67. Dennington R, Keith T and Millam J 2009 GaussView Version 5. Semichem Inc. Shawnee Mission KS

  68. Boys S and Bernardi F 1970 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  69. Jeziorski B, Moszynski R and Szalewicz K 1994 Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes Chem. Rev. 94 1887

    Article  CAS  Google Scholar 

  70. Turney J M et al. 2012 Psi4: An open-source ab initio electronic structure program WIREs Comput. Mol. Sci. 2 556

    Article  CAS  Google Scholar 

  71. Hohenstein E G and Sherrill C D 2010 Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory J. Chem. Phys. 133 014101

    Article  Google Scholar 

  72. Plimpton S 1995 Fast parallel algorithms for short-range molecular dynamics J. Comput. Phys. 117 1

    Article  CAS  Google Scholar 

  73. Wang Y-L, Shah F U, Glavatskih S, Antzutkin O N and Laaksonen A 2014 Atomistic insight into orthoborate-based ionic liquids: Force field development and evaluation J. Phys. Chem. B 118 8711

    Article  CAS  Google Scholar 

  74. Rai N and Siepmann J I 2007 Transferable potentials for phase equilibria. 9. explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds J. Phys. Chem. B 111 10790

    Article  CAS  Google Scholar 

  75. Rai N and Siepmann J I 2013 Transferable potentials for phase equilibria. 10. explicit-hydrogen description of substituted benzenes and polycyclic aromatic compounds J. Phys. Chem. B 117 273

    Article  CAS  Google Scholar 

  76. Mondal A and Balasubramanian S 2014 Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: A refined force field J. Phys. Chem. B 118 3409

    Article  CAS  Google Scholar 

  77. Mondal A and Balasubramanian S 2015 A refined all-atom potential for imidazolium-based room temperature ionic liquids: Acetate, dicyanamide, and thiocyanate anions J. Phys. Chem. B 119 11041

    Article  CAS  Google Scholar 

  78. Ketko M H, Kamath G and Potoff J J 2011 Development of an optimized intermolecular potential for sulfur dioxide J. Phys. Chem. B 115 4949

    Article  CAS  Google Scholar 

  79. Martinez L, Andrade R, Birgin E G and Martinez J M 2009 PACKMOL: A package for building initial configurations for molecular dynamics simulations J. Comp. Chem. 30 2157

    Article  CAS  Google Scholar 

  80. Nosé S 1984 A unified formulation of the constant temperature molecular dynamics methods J. Chem. Phys. 81 511

    Article  Google Scholar 

  81. Hoover W G 1985 Canonical dynamics: Equilibrium phase-space distributions Phys. Rev. A 31 1695

    Article  CAS  Google Scholar 

  82. Humphrey W, Dalke A and Schulten K 1996 VMD: Visual molecular dynamics J. Mol. Graphics 14 33

    Article  CAS  Google Scholar 

  83. Fiorin G, Klein M L and Hénin J 2013 Using collective variables to drive molecular dynamics simulations Mol. Phys. 111 3345

    Article  CAS  Google Scholar 

  84. Darve E, Rodriguez-Gómez D and Pohorille A 2008 Adaptive biasing force method for scalar and vector free energy calculations J. Chem. Phys. 128 144120

    Article  Google Scholar 

  85. Sharma S, Gupta A, Dhabal D and Kashyap H K 2016 Pressure-dependent morphology of trihexyl(tetradecyl)phosphonium ionic liquids: A molecular dynamics study J. Chem. Phys. 145 134506

    Article  Google Scholar 

  86. Xing H, Liao C, Yang Q, Veith G M, Guo B, Sun X-G, Ren Q, Hu Y-S and Dai S 2014 Ambient Lithium-SO2 batteries with ionic liquids as electrolytes Angew. Chem. Int. Ed. 53 2099

    Article  CAS  Google Scholar 

  87. Weber H, Salanne M and Kirchner B 2015 Toward an accurate modeling of ionic liquid-TiO2 interfaces J. Phys. Chem. C 119 25260

    Article  CAS  Google Scholar 

  88. Brehm M, Weber H, Pensado A S, Stark A and Kirchner B 2012 Proton transfer and polarity changes in ionic liquid-water mixtures: A perspective on hydrogen bonds from ab initio molecular dynamics at the example of 1-ethyl-3-methylimidazolium acetate-water mixtures-Part 1 Phys. Chem. Chem. Phys 14 5030

    Article  CAS  Google Scholar 

  89. Dang L X and Wick C D 2011 Anion effects on interfacial absorption of gases in ionic liquids. A molecular dynamics study J. Phys. Chem. B 115 6964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Department of Science and Technology, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUNDARAM BALASUBRAMANIAN.

Additional information

Supplementary Information (SI)

The Supplementary Information associated with this article contains density of pure ILs, simulation box lengths, reaction coordinate, RDFs, CDFs, density profile and potential energy. Supplementary Information is available at http://www.ias.ac.in/chemsci.

Special Issue on THEORETICAL CHEMISTRY/CHEMICAL DYNAMICS

Dedicated to the memory of the late Professor Charusita Chakravarty

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 2.09 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MONDAL, A., BALASUBRAMANIAN, S. Molecular Dynamics Investigation of Efficient SO2 Absorption by Anion-Functionalized Ionic Liquids. J Chem Sci 129, 859–872 (2017). https://doi.org/10.1007/s12039-017-1236-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1236-z

Keywords

Navigation