Skip to main content
Log in

Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A highly sensitive electrochemical sensor has been constructed for determination of Cr(VI) with the lowest limit of detection (LOD) reported to date using gold nanoparticles (AuNPs) modified screen-printed electrode (SPE). The modification of SPE by casting pure AuNPs increases the sensitivity for detection of Cr(VI) ion using anodic stripping voltammetry. Cr(VI) ions are reduced to chromium metal on SPE-AuNPs by applying deposition potential of –1.1 V for 180 s. Afterwards, the oxidation peak current of chromium is obtained by linear sweep voltammetry in the range of −1.0 V to 0.2 V. Under the optimized conditions (HClO4, 0.06 mol L−1; deposition potential, –1.1 V; deposition time, 180s; scan rate, 0.1 V s−1), the limit of detection (LOD) was 1.6 pg mL−1. The fabricated electrode was successfully used for detection of Cr(VI) in tap and seawater.

An electrochemical sensor has been constructed based on screen-printed electrode (SPE) modified with gold nanoparticles for determination of Cr(VI) ion in water samples. The coupling of anodic striping voltammetry with SPE modified nanostructures enhanced the sensitivity of electrochemical sensor for detection of Cr(VI) ion at low sample volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Stern A H 2010 Environ. Res. 110 798

    Article  CAS  Google Scholar 

  2. Wu T, Liu C, Tan K J, Hu P P and Huang C Z 2010 Anal. Bioanal. Chem. 397 1273

    Article  CAS  Google Scholar 

  3. Han Z Q, Qi L, Shen G Y, Liu W and Chen Y 2007 Anal. Chem. 79 5862

    Article  CAS  Google Scholar 

  4. Panne U U, Neuhauser R E, Theisen M, Fink H and Niessner R 2001 Spectrochim. Acta B 56 839

    Article  Google Scholar 

  5. Pereira J S F, Moraes D P, Antes F G, Diehl L O, Santos M F P, Guimaraes R C L, Fonseca T C O, Dressler V L and Flores E M M 2010 Microchem. J. 96 4

    Article  CAS  Google Scholar 

  6. Chaguaramos L 2012 Talanta 97 505

    Article  Google Scholar 

  7. Korolczuk M 2000 Anal. Chim. Acta. 414 165

    Article  CAS  Google Scholar 

  8. Liu C, He C, Xie T and Yang J 2015 Fuller. Nanotub. Car. N. 23 125

    Article  CAS  Google Scholar 

  9. Korolczuk M and Grabarczyk M 1999 Anal. Chim. Acta. 387 97

    Article  CAS  Google Scholar 

  10. Kumar Jena B and Retna Raj C 2008 Talanta 76 161

    Article  Google Scholar 

  11. Dajas F, Rivera F, Blasina F, Arredondo F, Echeverry C, Lafon L, Morquio A and Heizen H 2003 Neurotox. Res. 5 425

    Article  Google Scholar 

  12. Yusof N A, Daud N, Zareena S, Saat M and Tee T W 2012 Int. J. Electrochem. Sci. 7 10358

    CAS  Google Scholar 

  13. Khun N W and Liu E 2009 Electrochim. Acta 54 2890

    Article  CAS  Google Scholar 

  14. Rahman N A, Yusof N A, Amirah N, Maamor M, Mariam S and Noor M 2012 Int. J. Electrochem. Sci. 7 186

    Google Scholar 

  15. Daud N, Yusof N A and Tee T W 2011 Int. J. Electrochem. Sci. 6 2798

    CAS  Google Scholar 

  16. Costa-Garcia A, Martinez-paredes G and Bego M 2009 Electrochim. Acta 54 4801

    Article  Google Scholar 

  17. Dominguez-Renedo O, Ruiz-Espelt L, Garcia-Astorgano N and Julia Arcos-Martinez M 2008 Talanta 76 854

    Article  CAS  Google Scholar 

  18. Xing S, Xu H, Chen J, Shi G and Jin L 2011 J. Electroanal. Chem. 652 60

    Article  CAS  Google Scholar 

  19. Chen S and Murray R W 1999 J. Phys. Chem. B 103 9996

    Article  CAS  Google Scholar 

  20. Li J, Yamada Y, Murakoshi K and Nakato Y 2001 Chem. Commun. 21 2170

    Article  Google Scholar 

  21. Haruta M 1997 Catal. Today 36 153

    Article  CAS  Google Scholar 

  22. Subramanian V, Wolf E E and Kamat P V 2003 J. Phys. Chem. B 107 7479

    Article  CAS  Google Scholar 

  23. Kachoosangi R T and Compton R G 2013 Sensor Actuator B: Chem 178 555

    Article  CAS  Google Scholar 

  24. Hajian R, Yusof N R, Faragi T and Shams N 2014 Plos One 9 e96686

    Article  Google Scholar 

  25. Bernalte E, Marin Sanchez C and Pinilla Gil E 2012 Sensor Actuator B 161 669

    Article  CAS  Google Scholar 

  26. Trasatti S and Petrii O A 1991 Pure Appl. Chem. 63 711

    Article  CAS  Google Scholar 

  27. Salkind A J and Yeager E 1972 In Techniques of Electrochemistry Vol. 1 (New York: Wiley Interscience) p. 293

  28. Bergamini M F, dos Santos D P and Zanoni M V B 2007 Sensor Actuator B 123 902

    Article  CAS  Google Scholar 

  29. Pladziewicz J R and Espenson J H 1971 Inorg. Chem. 10 634

    Article  Google Scholar 

  30. Ensafi A A and Hajian R 2005 Electroanalysis 18 579

    Article  Google Scholar 

  31. Somerset V, Leaner J, Mason R, Iwuoha E and Morrin A 2010 Electrochim. Acta 55 4240

    Article  CAS  Google Scholar 

  32. Lingane J J 1941 Chem. Revs. 29 1

    Article  CAS  Google Scholar 

  33. Jin-Ming J, Yan-Yan L, Ye-Lei Z, Xi-Shan G and Qiang C 2013 Sensors 13 13063

    Article  Google Scholar 

  34. Christian G D 2004 Analytical Chemistry 6 th edition (John Wiley) p. 113

Download references

Acknowledgements

The authors are thankful for financial support under Prototype Research Grant Scheme (PRGS) vote number 5530100 from Ministry of Education Malaysia (MOE) and Science Fund vote number 5450605 from Ministry of Science, Technology and Innovation (MOSTI), Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to NOR AZAH YUSOF or REZA HAJIAN.

Additional information

Supplementary Information

Figure S1 (A) EDS image of AuNPs/SPE and (B) EDS spectrum from point 1 focused on AuNPs bright dot are available at www.ias.ac.in/chemsci

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 21.6 KB)

High resolution image (TIF 266 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TUKUR, S.A., YUSOF, N.A. & HAJIAN, R. Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode. J Chem Sci 127, 1075–1081 (2015). https://doi.org/10.1007/s12039-015-0864-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0864-4

Keywords

Navigation