Skip to main content

Advertisement

Log in

Highly selective light scattering imaging of chromium (III) in living cells with silver nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this contribution, we present a highly selective chromium ion (Cr3+)-induced aggregation of citrate-capped silver nanoparticles, which could be applied for the imaging of the distribution of Cr3+ in cells. It was found that selective aggregation of citrate-capped silver nanoparticles occurs at room temperature in the presence of Cr3+ in aqueous medium of pH 6.8, resulting in color change from yellow to pink in 10 min and enhanced localized surface plasmon resonance (LSPR) scattering signals. Tenfold of other metal ions including Al3+, Ca2+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, La3+, Mg2+, Ni2+, Pb2+, Tb3+ and Zn2+ had no response. Mechanism analysis showed that the aggregation is mainly dependent on the chelation of Cr3+ ion with the citrate ion capped on silver nanoparticles, forming crosslinking aggregates of silver nanoparticles. With the Cr3+-induced enhancement of LSPR scattering signals, Cr3+ in cytoplasm of human bone marrow neuroblastoma cells could be imaged with dark-field light scattering imaging technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  Google Scholar 

  2. Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317

    Article  CAS  Google Scholar 

  3. Sato K, Hosokawa K, Maeda M (2007) Colorimetric biosensors based on DNA-nanoparticle conjugates. Anal Sci 23:17–20

    Article  Google Scholar 

  4. Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 9:2363–2371

    Article  CAS  Google Scholar 

  5. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. P Natl Acad Sci USA 101:14036–14039

    Article  CAS  Google Scholar 

  6. Oishi J, Asami Y, Mori T, Kang JH, Niidome T, Katayama Y (2008) Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides. Biomacromolecules 9:2301–2308

    Article  CAS  Google Scholar 

  7. Chen Z, Luo SL, Liu CB, Cai QY (2009) Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles. Anal Bioanal Chem 395:489–494

    Article  CAS  Google Scholar 

  8. Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury (II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun:2242–2244

  9. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Edit 47:3927–3931

    Article  CAS  Google Scholar 

  10. Wang ZD, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267

    Article  CAS  Google Scholar 

  11. Lin SY, Liu SW, Lin CM, Chen CH (2002) Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal Chem 74:330–335

    Article  CAS  Google Scholar 

  12. Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533

    Article  CAS  Google Scholar 

  13. He XR, Liu HB, Li YL, Wang S, Li YJ, Wang N, Xiao JC, Xu XH, Zhu DB (2005) Gold nanoparticle-based fluorometric and colorimetric sensing of copper(II) ions. Adv Mater 17:2811–2815

    Article  CAS  Google Scholar 

  14. Obare SO, Hollowell RE, Murphy CJ (2002) Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18:10407–10410

    Article  CAS  Google Scholar 

  15. Li L, Li BX, Qi YY, Jin Y (2009) Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 393:2051–2057

    Article  CAS  Google Scholar 

  16. Preuss HG, Echard B, Perricone NV, Bagchi D, Yasmin T, Stohs SJ (2008) Comparing metabolic effects of six different commercial trivalent chromium compounds. J Inorg Biochem 102:1986–1990

    Article  CAS  Google Scholar 

  17. McCarty MF (1993) Homologous physiological effects of phenformin and chromium picolinate. Med Hypotheses 41:316–324

    Article  CAS  Google Scholar 

  18. Broadhurst CL, Domenico P (2006) Clinical studies on chromium picolinate supplementation in diabetes mellitus—a review. Diabetes Technol Ther 8:677–687

    Article  CAS  Google Scholar 

  19. Chen F, Bower J, Leonard SS, Ding M, Lu Y, Rojanasakul Y, Kung H-f, Vallyathan V, Castranova V, Shi X (2002) Protective roles of NF-kappa B for chromium(VI)-induced cytotoxicity is revealed by expression of Ikappa B kinase-beta mutant. J Biol Chem 277:3342–3349

    Article  CAS  Google Scholar 

  20. Li Chen T, Wise SS, Holmes A, Shaffiey F, Wise JP, Thompson WD, Kraus S (2009) Cytotoxicity and genotoxicity of hexavalent chromium in human and North Atlantic right whale (Eubalaena glacialis) lung cells. Comp Biochem Physiol C Toxicol Pharmacol 150:487–494

    Article  Google Scholar 

  21. Luo JH, Zhang ZJ, Chen DL, Shu WQ, Wang ZP (2005) Flow-injection chemiluminescence as a means of studying the metabolism of unbound chromium(III) in rabbit blood with on-line microdialysis sampling. Microchim Acta 150:311–316

    Article  CAS  Google Scholar 

  22. Zhou ZG, Yu MX, Yang H, Huang KW, Li FY, Yi T, Huang CH (2008) FRET-based sensor for imaging chromium(III) in living cells. Chem Commun:3387–3389

  23. Yu FB, Zhang WS, Li P, Xing YL, Tong LL, Ma JP, Tang B (2009) Cu2+-selective naked-eye and fluorescent probe: its crystal structure and application in bioimaging. Analyst 134:1826–1833

    Article  CAS  Google Scholar 

  24. Zhao Y, Zhang XB, Han ZX, Qiao L, Li CY, Jian LX, Shen GL, Yu RQ (2009) Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal Chem 81:7022–7030

    Article  CAS  Google Scholar 

  25. Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17:4630–4635

    Article  CAS  Google Scholar 

  26. Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108:13957–13962

    Article  CAS  Google Scholar 

  27. Ling J, Sang Y, Huang CZ (2008) Visual colorimetric detection of berberine hydrochloride with silver nanoparticles. J Pharmaceut Biomed 47:860–864

    Article  CAS  Google Scholar 

  28. Si S, Kotal A, Mandal TK (2007) One-dimensional assembly of peptide-functionalized gold nanoparticles: an approach toward mercury ion sensing. J Phys Chem C 111:1248–1255

    Article  CAS  Google Scholar 

  29. Wei H, Chen CG, Han BY, Wang EK (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  Google Scholar 

  30. Wu LP, Li YF, Huang CZ, Zhang Q (2006) Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal Chem 78:5570–5577

    Article  CAS  Google Scholar 

  31. He W, Li YF, Huang CZ, Xie JP, Yang RG, Zhou PF, Wang J (2008) A one-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal Chem 80:8424–8430

    Article  CAS  Google Scholar 

  32. Zhang L, Huang CZ, Li YF, Xiao SJ, Xie JP (2008) Label-free detection of sequence-specific DNA with multiwalled carbon nanotubes and their light scattering signals. J Phys Chem B 112:7120–7122

    Article  CAS  Google Scholar 

  33. Wang J, Li YF, Huang CZ, Wu T (2008) Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal Chim Acta 626:37–43

    Article  CAS  Google Scholar 

  34. Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951

    Article  CAS  Google Scholar 

  35. Wulandari P, Li XH, Tamada K, Hara M (2008) Conformational study of citrates adsorbed on gold nanoparticles using Fourier transform infrared spectroscopy. J Nonlinear Opt Phys 17:185–192

    Article  CAS  Google Scholar 

  36. Mpourmpakis G, Vlachos DG (2008) Insights into the early stages of metal nanoparticle formation via first-principle calculations: the roles of citrate and water. Langmuir 24:7465–7473

    Article  CAS  Google Scholar 

  37. Maillard M, Huang PR, Brus L (2003) Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett 3:1611–1615

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the financial supports of the Ministry of Science and Technology of the People’s Republic of China (No. 2006CB 933100), and the National Natural Science Foundation of China (No. 20877063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhi Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1737 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Liu, C., Tan, K.J. et al. Highly selective light scattering imaging of chromium (III) in living cells with silver nanoparticles. Anal Bioanal Chem 397, 1273–1279 (2010). https://doi.org/10.1007/s00216-010-3619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3619-6

Keywords

Navigation